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Abstract

The social network-enhanced Web has become increasingly important. With a wide

spectrum of social services such as blogs, wikis, online forums, social network services

and community question answering portals, individuals can produce, consume and share

information through rich user interactions. These interactions include conversations, an-

notations and resource sharing, enabling faster and wider dissemination and development

of information at a large scale. In addition, the recent popularized micro-blogging ser-

vices such as Twitter and Tumblr have revolutionized the Web to a more synchronized

world, opening opportunities for users around the world with various cultural backgrounds

to generate and propagate information in “real-time”. Conversations as a scientific field

have been studied for decades. Traditional research related to conversations has been

considered by a variety of disciplines including linguistics, sociology, anthropology, psy-

chology, communication studies and translation studies, each of which is subject to its

own assumptions, dimensions of analysis, and methodologies. One major characteristic of

traditional research on conversations is that most previous classic studies were based on

surveys, field research, small scale datasets and sometimes depend on a detailed inspec-

tion of tape recordings or transcriptions made from such recordings. While some theories

and methodologies developed in these areas became the foundations for modern analysis of

conversations (e.g., the ones based on computational linguistics and information retrieval),

most of them cannot be directly applied to online settings due to their qualitative nature

and also due to some of their case-by-case style of studies that cannot be scaled to the

amount of data online. In addition, since such research was conducted prior to the time

of popularity of the Internet, the conclusions and results obtained through these methods

are also needed to be re-verified in the new era as well.

Although a large amount of research has been made in mining and understanding online

conversational media, some practical problems remain unanswered. First of all, when
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facing a large amount of socially generated content, users simply cannot consume it in an

effective and efficient way, leading to the problem of information overload. On the other

hand, it is difficult for a user to obtain information distributed outside of their social circle,

even though it might match their interests, leading to the problem of information shortage.

Users may spend a significant amount of time to filter and search relevant information in

such platforms. In general, the problem can be considered as information filtering in

online conversational media. One of the central challenges to information filtering is to

track users’ interests. The assumption is that if we can understand them perfectly, most

relevant and fresh information can be selected from the ocean of items and presented to

users. The key ingredient of tracking users’ interests for online conversational media is to

understand the content generated by users, usually modeled as topical distributions, as

well as rich interaction data.

In this dissertation, we will discuss both information filtering and topic/interest track-

ing as they are two important problems in online conversational media, in a principled

way. On one hand, we will demonstrate how we develop new approaches to achieve the

state-of-the-art performance in each direction. On the other hand, we will also discuss the

relationships between these two directions and show how they can indeed link with each

other. We link two directions of mining and understanding online conversational media as

a dual relationship of data analysis in online conversational media and demonstrate that

how they benefit from the development of each other. This dissertation can be used as a

guideline for readers who are interested in data analysis in social media in general.
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Chapter 1

Overview

In this chapter, we briefly review the history of online conversational media and how it

dramatically contrasts with traditional Web . Then, we outline two fundamental research

challenges of mining and understanding online conversational media: 1) information filter-

ing and 2) modeling users’ interests/topics, revealing that they are two sides of the same

coin and have significant interplay with each other. More specifically, in this chapter, we

argue that the core of information filtering is to understand what users’ interests are and

what they are talking about in online conversational media as user generated content is

a key component in such media sources. In the latter part of the chapter, we outline

a series of steps, which consists of the main part of this dissertation, to achieve better

performance by incorporating interests/topics tracking components into the filtering or

recommendation system. In addition, as topic tracking is so important, we will introduce

its unique challenges in online conversational media and how we can cope with them by

discussing the contributions of this dissertation on this direction.
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1.1 Online Conversational Media

The social network-enhanced Web has become increasingly important. With a wide spec-

trum of social services such as blogs, wikis, online forums, social network services and

community question answering portals, individuals can produce, consume and share in-

formation through rich user interactions. These interactions include conversations, anno-

tations and resource sharing, enabling faster and wider dissemination and development of

information at a large scale. In addition, the recent popularized micro-blogging services

such as Twitter and Tumblr have revolutionized the Web to a more synchronized world,

opening opportunities for users around the world with various cultural backgrounds to

generate and propagate information in “real-time”.

The traditional Web is dominated by static pages, created by various organizations

and users, serving the role of publishing information. User interactions rarely take place

in such environments as the technologies available at that time did not support rich user

interactions well. For example, the pure HTML standard at that time did not allow

users to easily post new content to a static page. Also, the presentation of web pages

cannot be easily modified on the fly. In addition, a service relying on users’ feedback is

usually created by heavy-weighted Common Gateway Interfaces (CGIs), which is much

more difficult to be written and deployed, compared to today’s web frameworks. All these

technological issues hindered the Web 1.0 to be able to serve as a platform for users’

communications. Some may argue that users’ interactions do exist in the early Web era.

For instance, mailing lists and newsgroups are such examples where users exchange ideas

and discuss issues through emails and other types of clients, rather than Web browsers.

Thus, compared to Web 2.0 paradigms, the dynamic and scale of these interactions is

constrained.

Differing from the traditional Web, today’s socially-enabled Web not only embraces
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newly developed technologies to allow better user interactions on the Web but also opens

new opportunities for mobile devices to access user generated data, including text, im-

ages, audio and video. One interesting type of data is conversations between users. Here,

conversations are defined informally as information exchange between users in an informal

way. Indeed, on a socially-enabled Web, users may have a variety of channels to initialize

conversations, with different purposes in mind. For instance, question answering portals

have attracted users to interact on specific problems and open issues while forums are

generally places for more free discussions. Also, Facebook might be for talks between

friends and acquaintances but LinkedIn is for professional opinions. These online con-

versations, usually accompanied by rich metadata, play a major role in today’s dynamic

Web ecosystems. Online conversations, though taking place in different platforms and

services, share a number of unique characteristics. First of all, most of them are infor-

mal interactions between users, indicating that grammar and syntax of them might have

errors. Second, although multimedia data is prevalent on the Web nowadays, a overwhelm-

ing amount of conversational data is still textual, providing a significant opportunity for

deeper understanding. Third, many conversations are shared and propagated through

users’ connections in online social networks (e.g., Facebook, Twitter, Weibo, etc.), mak-

ing a much wider impact than other formats. Finally conversations are used to shape and

characterize users’ interests, serving as “footprints” for users, which allows online media

companies and advertising agencies to target their audience in a precise manner.

The changes and transformations of the Web, distinguished by online conversations

with social media, have been bringing tremendous opportunities as well as challenges

for multiple research communities. On one hand, researchers are facing an amount of

user interaction data that has never been explored before, which reveals many details

of such interactions that cannot be captured through traditional studies such as surveys

and field studies. On the other hand, practical and theoretical challenges remain for
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better understanding and predicting users’ behaviors and relations in online conversational

media. In particular, in order to perform reasoning in a large scale and handle inherent

uncertainty, computational methods and probabilistic modeling become central tools to

tackle such predictive problems.

Conversations as a scientific field have been studied for decades. Traditional research

related to conversations has been considered by a variety of disciplines including linguistics,

sociology, anthropology, psychology, communication studies and translation studies, each

of which is subject to its own assumptions, dimensions of analysis, and methodologies. For

example, linguistics mainly focuses on understanding the discourse structures and patterns

of conversations at various levels such as syntax, lexicon, style, rhetoric, meanings, speech

acts and other aspects of interaction (e.g., [75, 32]). While these structures cannot be

easily ignored to understand conversations, they might be at a too detailed level. In

addition, as discussed before, online conversations are usually not well-formed and so

linguistic analysis may face difficulties to uncover these structures. While in the sociology

context, researchers try to identify the organization of conversations (e.g., “turn-taking”

[173]) and their impact on human status and the corresponding interactions [14, 102].

For instance, some studies reveal how social relations, identity, knowledge and power are

reflected through conversations and how conversations are performed in informal settings

and institutional environments (e.g., classroom, court, conference, etc.). However, one

major characteristic of traditional research on conversations is that most previous classic

studies were based on surveys, field research, small scale datasets and sometimes depend

on a detailed inspection of tape recordings or transcriptions made from such recordings.

While some theories and methodologies developed in these areas became the foundations

for modern analysis of conversations (e.g., the ones based on computational linguistics

and information retrieval), most of them cannot be directly applied to online settings

due to their qualitative nature and also due to some of their case-by-case style of studies
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that cannot be scaled to the amount of data online. In addition, since such research

was conducted prior to the time of popularity of the Internet, the conclusions and results

obtained through these methods are also needed to be re-verified in the new era as well. For

instance, in 1969, Jeffrey Travers and Stanley Milgram [189] conducted the famous “small

world experiment” by sending mail among real persons to see whether small networks

of people exist in the society. With the experimental results in their hand, the authors

conjectured that a short distance between any pair of persons may exist, without any

large scale validations. Today, this kind of conjectures can be easily verified on massive

online conversational media such as Facebook and Twitter. For instance, in a recent study,

Backstrom et al. [15] observed that more than 721 million users on Facebook share a 4.74

degree of distance on average between users, which is even smaller than what researchers

might have expected. This is a representative example of how current research on similar

topics differs from traditional research not only on the conclusions but also on the scale

and the methods. In general, existing research on conversations needs to be adapted

to a larger setting, not focusing on a small number or a group of people but on the

tremendous number of online users. New approaches, which are equipped by up-to-date

high performance computing architectures such as Google’s MapReduce [58], to analyze

the vast volume of conversational data generated in the Internet era are deeply desired.

Apart from classical work on conversations, current research in social computing, infor-

mation retrieval, web mining, human computer interaction and computational linguistics,

is starting to address many similar problems related to conversational environments, such

as how to find useful information, how to understand user interactions and how to facili-

tate knowledge discovery and creation. For instance, machine learning methods have been

developed to analyze email to understand speech acts and activities [52, 36, 37, 124]. By

analyzing thousands of email messages, these methods discover striking patterns in com-

plex business environments like Enron, moving beyond the traditional research which is
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based on a small number of conversations between a handful of individuals. Similar work

has also been conducted on newsgroups to better classify messages and reconstruct conver-

sations and user interactions [203, 202]. For more social platforms, methods are proposed

to better model conversation–like in blogs [68, 13] and discussion boards or online forums

[133, 176, 69]. In addition, researchers have studied methods [212, 4] to better identify

high quality content in community–based question answering portals where users commu-

nicate with each other while the solutions and comments are generated in a conversational

fashion. Furthermore, a variety of studies have been conducted to group interleaving text

streams into conversations [200, 70] and understand the topics within them [66, 44]. Also,

a lot of recent attention has been paid to the phenomenon of microblogging services and

trying to understand how events and messages are spread in such a highly interactive user

network [46, 59, 177].

1.2 Research Challenges

Information filtering and topic/interest tracking are not two separate domains for online

conversational media but they are indeed two sides of the same coin. Information filtering

can be treated as an important application of topic/interest tracking while the latter is

the central component of the former. We will show later in this dissertation that these

two tasks can benefit from each other and can be modeled simultaneously.

1.2.1 Information Filtering

Although a large amount of research has been made in mining and understanding online

conversational media, some practical problems remain unanswered. For instance, many

online conversational services such as, Twitter, Facebook, LinkedIn and Yahoo! Answers,

serve as platforms for users to obtain fresh and relevant information. Some may require
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users to actively search and browse among the repository of items according to their

information needs while others may allow users to subscribe to feeds from their peers to

obtain fresh updates. Nevertheless, the sheer amount of content generated by users is

causing two issues that prevent it from being sufficiently relevant to users; deteriorating

user experience and engagement. First of all, when facing a large amount of socially

generated content, users simply cannot consume it in an effective and efficient way, leading

to the problem of information overload. On the other hand, if users subscribe to their social

connections, information for a user is usually limited in scope to the their connections.

Thus, it is difficult for a user to obtain information distributed outside of their social circle,

even though it might match their interests, leading to the problem of information shortage.

Users may spend a significant amount of time to filter and search relevant information in

such platforms. From the perspective of service providers, it is also very important to

understand how users interact with the systems through a variety of actions such as re-

posting, replying, commenting and clicks. In general, the problem can be considered as

information filtering in online conversational media. This problem has some significant

challenges. First, although the number of items generated by users in services is huge, a

particular user will interact with few of them, making the interaction data sparse. Second,

new users and new content items flow into the system continuously. Thus, the “cold start”

problem tends to be severe in these social platforms, compared to traditional information

systems. In addition, a tremendous amount of content is rich yet noisy. Simple information

retrieval or topical modeling techniques may not be sufficient to capture users’ interests.

To address both the problemof information overload and information shortage, social

media monitoring systems are built to filter and recommend content items to users based

on numerous signals. This area has recently attracted close attention of academic and

industrial research communities.

The task of information filtering can be approached from various perspectives. From

9



www.manaraa.com

the Information Retrieval (IR) perspective, constructing personalized information results

can be cast into the classic ranking problem: the task is to rank items by descending order

of user interest. It may be true that some existing IR techniques could be potentially

applied to social information filtering. However, user’s interests in online conversational

media are not represented in terms of a search query. Instead, queries are implicit and

have to be inferred. The absence of a search query distinguishes the information filtering

problem under social context from many classic IR tasks. In addition, social information

needs are more diversified compared to traditional IR scenarios. Although traditional IR

tools do not appear to be directly applicable to ranking in online conversational media,

some of recently developed learning to rank approaches are very appealing to be used

in the new setting. From the perspective of Recommender Systems (RecSys), building

relevant list of information items can be viewed as recommending relevant items to users.

Thus, many collaborative filtering techniques are applicable to the task of social stream

ranking. However, as discussed before, online conversational media services are much more

dynamic than traditional information systems: many new items can be pushed into the

system every second. Therefore, the cold start problem becomes even more severe in such

platforms. The traditional collaborative filtering paradigm needs to be adjusted in the

new environment.

1.2.2 User Interest Profiling

One of the central challenges to information filtering is to track users’ interests. The

assumption is that if we can understand them perfectly, most relevant and fresh informa-

tion can be selected from the ocean of items and presented to users. The key ingredient

of tracking users’ interests for online conversational media is to understand the content

generated by users, usually modeled as topical distributions, as well as rich interaction

data.
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Topic modeling is a fundamental problem in text mining and many techniques have

been developed for such purposes. Topic models have been applied to numerous text

corpora to find latent topics to help people visualize and understand the themes of the

corpora, with little or no supervision information. However, as discussed before, online

conversational media is full of dynamic and noisy data, presenting a number of significant

challenges for interest tracking. For instance, traditional topic modeling usually targets a

static text corpus where the size of vocabulary is limited and the content of documents in

the corpus is usually well-written. On the contrary, topics in online conversational media

emerge and vanish over time. These dynamics cannot be easily captured by standard

tools. Also, in online conversational media, we not only wish to discover topics from a

single data corpus but also compare and track topics from multiple data services (e.g.,

Twitter, news sources, forums). Thus, it might be desirable for topic modeling techniques

to be extended onto multiple data sources and model them simultaneously. In addition,

another drawback of these existing models is that most of them are general purpose with

which no real tasks are explicitly associated. Therefore, it might be difficult to employ

these models in real-world applications, such as for the problems of tracking trends and

predicting popularity of keywords. As a result of the lack of a particular task, there is

also no consensus on how these models should be evaluated and compared. Although

perplexity is usually used for evaluating predictive power of models, it is not designed for

any real-world tasks and might not reflect their performance anyway.

Last but not least is the prevalence of meta data associated with the generated content.

Some of the meta data provides indispensable information on how topics should be formed

and analyzed. For instance, meta data like geographical locations raises new research

questions like 1) How is information created and shared in different geographic locations?

What is the inherent geographic variability of content? 2) What are the spatial and

linguistic characteristics of people? How does this vary across regions? 3) What is a good

11



www.manaraa.com

model for human mobility? Can we discover patterns in users’ usage of micro-blogging

services? All of these questions cannot be easily answered without tailoring existing models

to be aware of the corresponding meta data. Because of these drawbacks of existing topic

modeling techniques, when applying to conversational media, the research community is

calling for new approaches and dedicated extensions.

1.3 Contributions

In this dissertation, we will discuss both information filtering and topic/interest tracking

as they are two important problems in online conversational media, in a principled way.

On one hand, we will demonstrate how we develop new approaches to achieve the state-

of-the-art performance in each direction. On the other hand, we will also discuss the

relationships between these two directions and show how they can indeed link with each

other. For information filtering, we will show that:

• In community–based question answering portals, we explore the problem of filtering

question answering content from discussion boards and divide it into two subtasks:

identifying question–related first posts and finding potential answers in subsequent

responses within the corresponding threads. We address both subtasks as classifica-

tion problems and choose several content–based and non-content based features and

carefully compare them individually and also in combinations. We do not use any

service or dataset–specific heuristics or features (like the rank of users) in our classi-

fication model; therefore our approach should be usable in any discussion board. We

compare our approach with previous methods and show significant improvements in

experimental results.

• For the problem of filtering messages in micro-blogging services, we first tackle a

broader version of the problem, which is to identify popular messages. We treat
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it as a classification task. We train classifiers with positive and negative examples

of messages which will be retweeted in the future which are shared in the future.

To build such classifiers, we investigate a wide spectrum of features to determine

which ones can be successfully used as predictors of popularity, including the content

and topical information of messages, graph structural properties of users, temporal

dynamics of popular messages and meta-information of users and messages as well.

Our experiments are conducted on two massive real-world datasets and the results

suggest that we can successfully predict whether a message will be popular or not

and its volume with good predictive performance. The work tries to answer the

following questions: 1) What features are useful for predicting popular messages?

2) Are the features for low volume popular messages the same as the ones with

high volume? 3) Are the popular messages predicted from our method “legitimate

messages”, or just spam?

• To filter information for each user, we study a surrogate problem of predicting

whether a user will take actions towards a message in micro-blogging environment.

Our method can be easily extended to model multiple types of users’ decisions as

well. We use a state-of-the-art recommendation model, Factorization Machines FM

[165], to model user decisions and user-generated content simultaneously. In partic-

ular, we propose Co-Factorization Machines (CoFM), which deal with two (multiple)

aspects of the dataset where each aspect is a separate FM. This type of model can eas-

ily predict user decisions while modeling user interests through content at the same

time. With this tool, we apply Factorization Machines to text data with constraints.

Thus, the resulting method can mimic state-of-the-art topic models and yet benefit

from the efficiency of a simpler form of modeling. For user decision modeling, we

compare a number of ranking-based loss functions and introduce the newly proposed

WARP loss [190] into the context of information filtering and recommendation. We
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apply our proposed methods to the problem of modeling personal decision making

in Twitter and explore a wide range of features, revealing which types of features

contribute to the predictive modeling and how content information can help with

the prediction.

For tracking users’ interests and topics, we address many problems mentioned above and

extend existing techniques to achieve state-of-the-art performance in a number of tasks in

online conversational media. In particular, we have developed the following models:

• In order to track topic trends, rather than building a general-purpose model, we

propose a new type of topic model incorporating the volume of terms into the tem-

poral dynamics of topics and directly optimize for the task. Unlike existing models

in which trends are either latent variables or not considered at all and thus are dif-

ficult to apply in practice, we combine state-space models with term volumes in a

supervised learning fashion which enables us to effectively predict volumes in the

future, even without new documents. In addition, it is straightforward to obtain

the volumes of latent topics as a by-product of our model, demonstrating the su-

periority of utilizing temporal topic models over traditional time-series tools (e.g.,

autoregressive models) to tackle this kind of problem. The proposed model can be

further extended with arbitrary word-level features which are evolving over time.

We present the results of applying the model to two datasets with long time periods

and show its effectiveness over non-trivial baselines.

• For modeling multiple social data sources simultaneously, we extend topic models by

allowing each text stream to have both local and shared topics. Also, we associate

each topic with a time-dependent function that characterizes its popularity over time.

By combining the two models, we effectively model temporal dynamics of multiple

correlated text streams in a unified framework. The new model can easily discover
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common and uncommon topics from multiple text collections with their temporal

dynamics. The proposed method is a simple and potentially scalable algorithm

for mining temporal topics. We mined interesting results from Yahoo! News and

Twitter obtained by applying our model.

• For geographical topic modeling, we propose a model that is both flexible enough

to embed all reasonable components of content and geographical locations, as well

as user preference modeling. Moreover, it scales to real-world datasets to handle

millions of documents and users. We address the problem of modeling geograph-

ical topical patterns on Twitter by introducing a novel sparse generative model.

It utilizes both statistical topic models and sparse coding techniques to provide a

principled method for uncovering different language patterns and common interests

shared across the world. Our approach is vital for applications such as user pro-

filing, content recommendation and topic tracking and the method can be easily

extended in a number of ways. We show that interesting topics can be identified by

the model and we demonstrate its effectiveness on the task of predicting locations

of new messages and outperforms non-trivial baselines.

In later chapters, we link two directions of mining and understanding online conver-

sational media as a dual relationship of data analysis in online conversational media and

demonstrate that how they benefit from the development of each other. This dissertation

can be used as a guideline for readers who are interested in data analysis in social media

in general.

1.4 Organization

In Chapter 2, we discuss the basic knowledge of both information filtering and topic

tracking. In particular, we put all the models and methods discussed in this dissertation
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under the umbrella of latent space/factor models. We will discuss how they can be viewed

as the same type of model [18, 181] with different objective functions and different choices

of underlying probabilistic distributions. From Chapter 3 to Chapter 5, we discuss several

information filtering systems are built for online conversational media and how they evolve

over time. By demonstrating the details of these methods, we show that our proposed

methods can significantly outperform state-of-the-art algorithms .

• In Chapter 3, we overview of how simple information filtering systems can be built

by investigating filtering possible answers to questions in community-based ques-

tion anwering portals. While we are tackling some important problems in online

conversational media, no users’ interests/topics are modeled and additionally, no

latent structure or insights are discussed through the predictive models we built for

the task. Certainly, we demonstrate some limitations and shortcomings of normal

machine learning approaches in online conversational media. The material in this

chapter was published in SIGIR 2009 and SIN 2009 [93, 97].

• In Chapter 4, we describe a framework to study how we can build an information

filtering system regardless of providing personal recommendations. In particular,

we predict the popularity of Twitter messages and study the effectiveness of a wide

range of features. The material in this chapter was published in WWW 2011 [92].

• In Chapter 6, we take one step further to study how personal information filtering

system can be built by investigating how social update streams in LinkedIn. The

material in this chapter was published in SIGIR 2012 [91].

• In Chapter 5, finally, we describe a system can both consider information filtering

and topic tracking simultaneously by proposing a Co-Factorization Machine. We

also discuss how different ranking objective functions behave in a large real-world

data. The material in this chapter was published in WSDM 2013 [96].
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• In Chapter 7, we focus on the problem of whether topical information is really help-

ful in online conversational media and if so, how can we utilize it. More specifically,

we demonstrate how topic models can be trained under the context of online con-

versational media. This is a bridge between the first part and the second part of

the dissertation to give a path of how topic models can be utilized in general. The

material in this chapter was published in SOMA 2010 [94].

From Chapter 8 to Chapter 10, we address the second direction of the dissertation, which

is to uncover hidden patterns from online conversational media.

• In Chapter 8, we address two essential problems of modeling topics in online conver-

sational media, which is to tackle multiple time-varying data sources. The material

in this chapter was published in KDD 2011 [95].

• In Chapter 9, we explore the idea of directly modeling terms’ volume in the context of

topic modeling. The approach introduced can be utilized in tracking trending topics

more precisely than previous work. The material in this chapter was published in

KDD 2011 [98].

• In Chapter 10, we address the problem of modeling geographical language variations

in online conversational media. The material in this chapter was published in WWW

2012 [90].

In Chapter 11, we will conclude the dissertation and discuss future directions.
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Chapter 2

Foundations and Preliminaries

In this chapter, we discuss certain aspects of the foundations of statistical machine learn-

ing. The goal is to provide background knowledge to later chapters. More specifically, we

focus on the theories and techniques that influence the models and methods introduced

in this dissertation.

We start the discussion on the definition of exchangeability and its implications in

section 2.1, especially how it provides the arguments for linear models and latent factor

models. In section 2.2, we discuss several linear models used in this dissertation and their

unified form. In section 2.3, we discuss how all matrix-factorization-based models can be

treated under a same framework and how it can be extended to multiple entities, leading

to a number of similar proposed frameworks, such as co-factorization methods.

In this dissertation, matrices are denoted by capital bold letters, X, Y, Z. Elements,

rows and columns of a matrix are denoted Xi,j,Xi·,X·j . Vectors are denoted by lower case

bold letters, and are assumed to be column vectors. Conventionally, we use X ∈ R
M×N

to denote a design matrix or a feature matrix where each row Xi· ∈ R
N is a row-vector,

representing a data instance. Each element in Xi· is a feature, characterizing the data

instance in a certain way. We use y to represent the response vector where yi could be a
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binary label or a real-valued response. If we have two matrices A and B, A ◦B denotes

the matrix inner product and A⊙B denotes the element-wise (Hadamard) product.

2.1 Preliminaries

In this sub-section, we provide a brief introduction on several fundamental definitions and

theorems on statistical modeling, providing justification to the linear models and latent

variable models used in this dissertation. We start our discussion with the exchangeability

definition on a sequence of random variables, namely an array of random variables in sub-

section 2.1.1. Then, we extend the discussion to two dimensional scenarios, matrices in

sub-section 2.1.2. In sub-section 2.1.3, we review the basics about exponential families and

Bregman divergences, which are used to formalize the unified view of matrix factorization

and collective matrix factorization.

2.1.1 1D Exchangeability & De Finetti’s Theorem

The following definition and the theorem is introduced in [9] while here, we follow the

presentation of [85].

Definition 1. (Infinite Exchangeability). We say that (xi, x2, · · · , xn) is an in-

finitely exchangeable sequence of random variables if, for any n, the joint probability

P (x1, x2, · · · , xn) is invariant to permutation of the indices. That is, for any permutation

π,

P (x1, x2, · · · , xn) = P (xπ1 , xπ2 , · · · , xπn)

A key assumption of many statistical analyses is that the random variables being

studied are independent and identically distributed (iid). Note that iid random variables

are always infinitely exchangeable. However, infinite exchangeability is a much broader
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concept than being iid; an infinitely exchangeable sequence is not necessarily iid. Now,

we can review de Finetti’s theorem below:

Theorem 1. (de Finetti’s Theorem). A sequence of random variables (x1, x2, · · · , xn) is

infinitely exchangeable if and only if, for all n,

P (x1, x2, · · · , xn) =
∫ n∏

i=1

P (xi | θ)P (θ)dθ

for some measure P on θ.

Theorem 1 implies many important results in probabilistic modeling. For instance, it

provides justification for using parameters to characterize data, which is indeed what both

linear model and latent variable models are trying to do.

2.1.2 2D Exchangeability & Aldous’ Theorem

Going beyond the exchangeability definition on one dimensional arrays, we can extend

it to two dimensional matrices. The following definition and theorem is introduced by

Aldous [10] but we follow a simpler discussion from [85].

Definition 2. (2D Array/Matrix Exchangeability). We say that matrix X is an row-

column exchangeable matrix if, for any i and j, the joint probability
∏

i,j P (Xi,j) is in-

variant to permutation of the indices. That is, for any permutation π,

P (Xi,j) = P (Xπ(i),π(j))

Exchangeability in this case can be interpreted as saying that the row labels and the

column labels carry no information about X. The analogue of Theorem 1 in 2D/Matrix

scenarios is the following theorem:
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Theorem 2. (Aldous’ Theorem). If X is row-column exchangeable, then

there exists a function g and independent uniformly distributed random variables

µ, {u1, · · · , um}, {v1, · · · , vm}, and ǫi,j such that:

P (Xi,j) = g(µ, ui, vj , ǫi,j)

The Theorem 2 says that any statistical model of a row-column exchangeable matrix

can be parametrized by a global effect µ, a row effect ui, a column effect vj, and a

dyadic effect ǫi,j (an interaction term between i and j). Moreover, the dyadic effects

are independent of one other. It should be noted that Theorem 2 does not imply any

particular form of g.

2.1.3 Exponential Families and Bregman Divergence

Consider the exponential family with natural parameter θ ∈ R
d; then the exponential

family probability density function can be written as:

P (x |θ) = exp
(
< x,θ > + logP0(x)− F (θ)

)
(2.1)

where P0(x) is a base measure, independent of the parameters and F (θ) =

log
∫
P0(x) exp(< x,θ >) dx is the log-partition function, ensuring the distribution is

normalized. In order to better link to Bregman divergence, we use the following variant

as the definition of the exponential family:

Definition 3. A parametric family of distribution ψF = {PF (x |θ) : θ} is a regular

exponential family if each density PF can be expressed as the following canonical form:

logPF (x |θ) =< x,θ > + log P0(x)− F (θ)
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Note that a distribution in ψF is uniquely identified by its natural parameters.

Next, we introduce Bregman divergence and its relationship to exponential families.

Definition 4. (Generalized Weighted Bregman Divergence) For a closed, proper, convex

function f : R → R and constant weight matrix W ∈ R
M×N
+ , the generalized weighted

Bregman divergence is:

DF

(
Θ ||X,W

)
=
∑

i,j

Wi,j

(
F (Θi,j) + F ∗(Xi,j)−Xi,jΘi,j

)

where F ∗ is the convex conjugate defined as F ∗(µ) = supΘ∈domF

[
Θ ◦ µ− F (Θ)

]
.

This definition differs from several traditional ones like [18] as here F is allowed to be

non-differentiable. If F is additionally differentiable, ∇F = f andWi,j = 1, the Definition

4 is equivalent to the standard definition:

DF

(
Θ ||X,W

)
=
∑

i,j

F ∗(Xi,j)− F ∗(f(Θi,j))−∇F ∗(f(Θi,j))(Xi,j − f(Θi,j))

= DF ∗(X || f(Θ))

Generalized Bregman divergences are important because they include many common sep-

arable divergences, such as squared loss, F (x) = 1
2x

2, and KL-divergence, F (x) = x log x.

There is a close relationship between Bregman divergences and regular exponential

families through:

logPF (x |θ) = logP0(x) + F ∗(x)− DF ∗(x || f(θ)) (2.2)

where the f(θ) = ∇F (θ). More discussions can be found in [53].
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2.2 Linear Models

Linear models are used and extended heavily for a wide range of tasks. Here, we review

three fundamental linear models in this section: 1) linear regression, 2) logistic regression

and 3) support vector machines. Note that these three models are usually used in different

scenarios. For instance, linear regression is mostly used for regression problems while

logistic regression is very effective in binary classification problems. On the other hand,

support vector machines can be adopted into both regression and classification problems.

Linear Regression: Linear regression starts with an assumption that the estimation

of the response yi for the data instance can be modeled through a linear function as:

ŷi = w0 +
N∑

j=1

wjxi,j (2.3)

where w ∈ R
N is a vector of regression coefficients and w0 is a bias term. Equation 2.3

can be re-written into:

ŷi = w0+ < w,xi > (2.4)

where < . > denotes the dot product.

Logistic Regression: Logistic regression models the conditional probability

P (yi |w,xi) as:

P (yi |w,xi) =
1

1 + exp(−yiwTxi)
(2.5)

where yi ∈ {−1,+1}, which are binary responses like spam web pages or non-spam ones.

This model is usually used to predict binary responses for classification problems.
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Support Vector Machines (SVM): Without diving into the detailed arguments,

we briefly introduce a C−Support Vector Classification (SVC) model, which is a binary

classification model but can be extended into multiple ones, here:

min
w,w0,ξ

1

2
wTw + C

M∑

i=1

ξi (2.6)

subject to yi(w
Txi + w0) ≥ 1− ξi

ξi ≥ 0, i = 1, · · · ,M

where C is a penalty weight, which is manually tuned, and ξ are slack variables. This

form is usually called the primal optimization problem for C−SVC. More details about

SVC, please refer to Chang et al. [40]. Also, SVM can be adapted to regression problems,

please refer to Smola and Schölkopf [184].

The three linear models mentioned above can be formalized into a single optimization

framework, shown by Yuan et al. [220]. In particular, we consider the following optimiza-

tion framework:

min
w

R(w) + C

M∑

i=1

L(w;xi,yi) (2.7)

where C > 0 is user-specified for balancing the regularization termR and the sum of losses.

Here, we omit the bias term for the sake of discussion. Three common loss functions are

considered:

LS(w;xi,yi) = (yi −wTxi)
2 (2.8)

LLR(w;xi,yi) = log
(
1 + exp(−yiw

Txi)
)

(2.9)

LL2(w;xi,yi) = max(0, 1− yiw
Txi)

2 (2.10)
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where LS corresponds to linear regression, LLR corresponds to logistic regression and LL2

is usually called L2 loss SVM. The regularization term R is used to prevent overfitting

and the following L2 and L1 regularization terms are commonly used:

RL2(w) =
1

2
||w||22 (2.11)

RL1(w) = ||w||1 (2.12)

All methods here are used in this dissertation in different ways.

2.3 Latent Factor Models

Although a linear model is effective in many prediction tasks, it does not usually discover

hidden patterns within datasets and cannot be easily used to reveal relationships between

features. Here, we review several significant aspects of latent variable models that are

related to this dissertation. An extensive overview of a unified view of latent factor models

can be found in Banerjee et al. [18], Singh and Gordon [181] and Singh [180]. In this sub-

section, we briefly review a unified view treatment of latent factor models introduced in

Singh and Gordon [181] and Singh [180]. The arguments presented here stand on the

definition of regular exponential family and generalized Bregman divergence.

In this dissertation, we focus on two types of latent factor models: 1) matrix factoriza-

tion and 2) collective matrix factorization, where a number of methods discussed in later

chapters in the dissertation can be categorized into these two categories.

2.3.1 Matrix Factorization

The basic matrix factorization model focused in this dissertation can be written as X ≈

f(UVT ). Different choices of the prediction link function f , the defition of ≈, and the

constraints we place on the factors U and V lead to a wide range of latent variable models.
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The relationship between matrix factorization and exponential families is made clear by

viewing the data matrix as a collection of samples {X11, · · · ,XMN}. Let Θ = UVT

be the parameters. For a regular Bregman divergence, minimizing DF ∗(Xi,j || f(Θi,j)) is

equivalent to maxmimizing the log-likelihood of the data under the assumption that Xi,j

is drawn from the distribution in ψF with natural parameter Θi,j.

Here, we provide a more generic treatment of matrix factorization as follows. A matrix

factorization can be defined by choosing the following criteria:

1. Data weights W ∈ R
M×N
+ .

2. Prediction link f : RM×N → R
M×N .

3. Hard constraints on factors U,V ∈ C.

4. Weighted loss L between X and X̂ = f(UVT ) where L(X ||X̂,W) ≥ 0.

5. Regularization penalty, R(U,V) ≥ 0.

Given these choices the optimization for the model X ≈ f(UVT ) is:

argmin
(U,V)∈C

L(X ||f(UVT ),W) +R(U,V)

Prediction links allow nonlinear relationships between Θ = UVT and the data X. We

focus on the case where L is a generalized Bregman divergences defined in Definition 4

and f is the matching link.

A lot of existing popular methods can be formalized under the generic view of matrix

factorization. Here, we review several ones that are related to this dissertation:

Singular Value Decomposition (SVD): The domain of Xi,j is set to R and the

link function f(θ) = θ. The loss L is chosen to be ||W ⊙ (X − X̂)||2F while Wi,j = 1

for regular SVD and Wi,j ≥ 0 for weighted SVD. For SVD, it is sometimes to constraint

UTU = I and VTV = Λ to ensure the unique solution.
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Probabilistic Latent Semantic Indexing (pLSI)/ Probabilistic Latent Se-

mantic Analysis (pLSA): The domain of X follows 1 ◦ X = 1 and the link function

f(θ) = θ. The loss L is chosen to be
∑

i,j Wi,j(Xi,j log
Xi,j

X̂i,j

) while Wi,j = 1. The

constraints on latent factors are 1TU1 = 1 while Ui,j ≥ 0. and 1TV = 1 while Vi,j ≥ 0.

Non-negative Matrix Factorization (NMF): The domain of X is set to R+ and

the link function f(θ) = θ. The loss L is chosen to be
∑

i,j Wi,j(Xi,j log
Xi,j

X̂i,j

+X̂i,j−Xi,j)

while Wi,j = 1. The constraints on latent factors are Ui,j ≥ 0 and Vi,j ≥ 0.

2.3.2 Collective Matrix Factorization

A set of related matrices involves entity types E1, · · · , Et, where the elements of each type

are indexed by a row or column in at least one of the matrices. The number of entities

of type Ei is denoted Ni. The matrices are denoted X(i,j) where each row corresponds

to an element of type Ei and each column to an element of type Ej . Each data matrix

can be factored under the model discussed above, X(i,j) ≈ f (i,j)(Θ(i,j)) where Θ(i,j) =

U(i)(U(j))T .

Collective matrix factorization addresses the problem of simultaneously factoring a set

of matrices that are related, where the rows or columns of one matrix index the same type

as the row or column of another matrix. Note that if a matrix is unrelated to the others, it

can be factored independently. Here, we consider the schema E = {(i, j) : Ei ∼ Ej∧ i < j}.

We assume that each matrix in the set {X(i,j)
(i,j)∈E} is reconstructed under a weighted

generalized Bregman divergence with factors {Ui}ti=1 and constant data weight matrices

{W(i,j)}(i,j) ∈ E. The total reconstruction loss on all the matrices is the weighted sum of

the losses for each reconstruction:

Lu =
∑

(i,j)∈E
α(i,j)

DF (Θ
(i,j) ||X(i,j),W(i,j)) +

t∑

i=1

R(U(i)) (2.13)
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where α(i,j) ≥ 0 are weights for each individual loss and we regularize on a per-factor basis

to mitigate overfitting. The learning process is to find all factors to minimize Lu.
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Chapter 3

Information Filtering in CQA

Portals

3.1 Introduction

Beginning from this chapter, we focus on the problem of information filtering in on-

line conversational media. We start the discussion on a particular type of such media,

Community-based Question Answering (CQA) portals in this chapter and expand the

discussion to other media as well in later chapters. Two general approaches to tackle

the problem of information filtering will be explored in this chapter: 1) building linear

models based on features and 2) identify discriminative or important features from some

characteristics of CQA. In fact, the techniques developed in later chapters can be seen as

more advanced versions to the methodologies demonstrated in this chapter.

CQA portals are important to online onversational media in many aspects. First of all,

content in CQA is usually presented in an informal fashion, carrying out as conversations

between users, although these users may not see or know each other at all. Second, CQA

plays a significant role in online conversational media. People ask questions and help
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others to seek answers on numerous type of CQA portals. For instance, Yahoo! Answers

announced1 in 2010 that the site has served 1 billion answers since the launch of the site in

2004 and more than 0.8 million questions per day. Given this scale, information filtering

would be vital for users to obtain relevant information and satisify their information needs.

In this chapter, we tackle the problem of information filtering in CQA portals. In

partiuclar, we explore the problem of extracing question answering content from online

forums in section 3.2. This functionality is especially useful for the services that are not

fully designed for question answering portals, such as discussion boards and forums. We

demonstrate that a linear model with simple features can outperform even complex models

in the task. In section 3.3, we explore an important feature–users’ authority score–and

see that it can improve filtering performance in CQA portals.

3.2 Mining Questions and Answers in CQA

Discussion boards, also known as online forums, are popular web applications widely used

in different areas including customer support, community development, interactive report-

ing and online education. Online users share ideas, discuss issues and form communities

within discussion boards, generating a large amount of content on a variety of topics. As

a result, interest in knowledge discovery and information extraction from such sources has

increased in the research community.

While the motivation for users to participate in discussion boards varies, in many

cases, people would like to use discussion boards as problem-solving platforms. Users

post questions, usually related to some specific problem, and rely on others to provide

potential answers. Numerous commercial organizations such as Dell and IBM directly

use discussion boards as problem-solving solutions for answering questions and discussing

needs posed by customers. Cong et al. [54] found that 90% of 40 discussion boards they

1http://yanswersblog.com/index.php/archives/2010/05/03/1-billion-answers-served/
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investigated contain question-answering knowledge. Using speech acts analysis on several

sampled discussion boards, Kim et al. [114, 113] showed that question answering content

is usually the largest type of content on discussion boards in terms of the number of

user-generated posts. Therefore, mining such content becomes desirable and valuable.

Mining question answering content from discussion boards has several potential appli-

cations. First, search engines can enhance search quality for question or problem related

queries by providing answers mined from discussion boards. Second, online Question An-

swering (QA) services such as Yahoo! Answers2, Answers.com3 and AllExperts4 would

benefit from using content extracted from discussion boards as potential solutions or sug-

gestions when users ask questions similar to what people have discussed on forums. This

would eliminate the time users wait for answers and enrich the knowledge base of those

QA services as well since discussion boards have a longer history than that of QA services

and also own a much larger amount of user generated content. Third, users who often

provide questions in forums may have expert knowledge in particular areas. Researchers

are trying to find experts in social media by utilizing question answering content; au-

thorities are discovered in discussion boards by understanding question answering content

and user interactions [30, 223, 110]. In addition, question answering content extracted

from discussion boards can be further used to augment the knowledge base of automatic

chat-bots [71, 101].

Although general content mining of discussion boards has gained significant attention

in recent years, the retrieval of question and potential answers from forums automatically

and effectively is still a non-trivial task. Users typically start a thread by creating an

initial post with arbitrary content and others reply to it in accordance with the type of

the first post. For example, if the first post is about a question, following posts may

2http://answers.yahoo.com/
3http://www.answers.com/
4http://www.allexperts.com/
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contain similar experiences and potential solutions. If the first post is an announcement,

following posts may contain clarifications, elaborations and acknowledgments. Hence, due

to the existence of different types of information, we cannot assume that every thread

on a discussion board is about a question, which makes discussion boards fundamentally

different from QA services like Yahoo! Answers that are designed specifically for question

answering. Additionally, the asynchronous nature of discussion boards makes it possible

or even common for multiple users to pursue different questions in parallel within one

thread.

In this section, we explore the problem of extracting question answering content from

discussion boards and divide it into two subtasks: identifying question-related first posts

and finding potential answers in subsequent responses within the corresponding threads.

We address both subtasks as classification problems and focus on the following research

questions:

• Can we detect question-related threads in an efficient and effective manner? In

addition to the content itself, what other features can be used to improve the per-

formance? How much can the combinations of some simple heuristics improve per-

formance?

• Can we effectively discover potential answers without actually analyzing the content

of replied posts? Who contributes those posts and where do those posts usually

appear?

• Can this task be treated as a traditional information retrieval problem suitable to a

relevance-based approach to the retrieval of question-answering content?

We choose several content-based and non-content based features and carefully compare

them individually and also in combinations. We do not use any service- or dataset-specific

heuristics or features (like the rank of users) in our classification model; therefore our
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approach should be usable in any discussion board. In order to test whether our method

can improve performance in both subtasks, we mainly compare our approach with one

recent similar work [54] (to our knowledge, the first to attack the same problem) and show

significant improvements in experimental results.

Sub-section 3.2.1 defines our tasks in more detail. Sub-section 3.2.2 presents our

features and gives a simple overview of other approaches from previous work. Experimental

results are reported in sub-section 3.2.3. Sub-section 3.2.4 concludes the whole section.

3.2.1 Problem Definition

Here, we discuss the problem in detail and then present a definition of the problem.

Questions: If the first post of one thread is about a specific problem that needs to

be solved, we would consider that post as a whole to be a question post. We do not focus

on identifying “question sentences” or “question paragraphs” but instead to find whether

the first post is a “question post”. Since users often express their problems in an informal

way and questions are stated in various formats, it is difficult to recognize questions at

the sentence or even paragraph level. For example, the following paragraph is a question

post from UbuntuForums.org, the official discussion board of Ubuntu Linux:

There are a number of threads on Firefox crashes, so it’s nothing new. I

upgraded from U8.04 to U8.10, but it’s no better. Then I tried Seamonkey,

and it worked fine for a couple of days. Now it too is crashing. I’m baffled.

Anyone have any ideas what I can do?

Although the last sentence is a question sentence, it gives us little information about what

the real problem is. The true problem is the scenario the author described with several

sentences as a whole. This post has another paragraph providing machine configurations

which we do not include here. Therefore, it is reasonable to treat the whole post as a
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question post. If there are multiple questions discussed in the first post, the interaction in

following replied posts might become complex (e.g., users may answer all those questions

while others may only response to some of them). To simplify the task, we treat it as a

single question post.

Answers: If one of the replied posts contains answers to the questions proposed in

the first post, we regard that reply as an answer post. As we discussed above, we do

not consider the number of answers should match the number of questions. Additionally,

we only consider those replies that directly answer the questions from the first post. We

ignore other questions (usually elaborated from the original ones) within replied posts and

their corresponding answers. Although such answers may provide more information to the

original questions and therefore could be potential better answers, in reality, users need to

understand all replied posts above to get an overall idea and answers would become less

meaningful if we only extract that single reply as the answer to the first post. We also

consider replied posts not containing the actual content of answers but providing links to

other answers as answer posts. If multiple posts provide links to other potential answers,

we treat the first one as the answer post.

Definition 5. A discussion board is a collection of threads. Each thread consists of the

first post and following replied posts. Our task is:

1. To detect whether the first post is a “question post” containing at least one problem

needed to be solved.

2. If the first post is a “question post”, try to identify the best answer post either directly

answering at least one question proposed in the first post or pointing to other potential

answer sources.

Therefore, the result from our system is question-answer post pairs. Ideally, users do

not need other information (e.g., the posts between them) to understand these pairs.
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3.2.2 Classification Methods

We consider both subtasks described in Section 3.2.1 as classification problems. Here, we

introduce the features we use and a brief review of previous approaches.

Question Detection: For this subtask, we describe and use several features other

researchers have used previously (e.g., question mark, 5W1H words) as well as features

that are borrowed from other fields (e.g., N-gram).

• Question mark: If users want to ask a question, they may express it in a question

sentence and therefore the sentence may contain a question mark at the end.

• 5W1H Words: If there is a question sentence, users probably would use 5W1H words

in it.

• Total number of posts within one thread: From our empirical study we found that if

one thread has many posts, either the topic of the thread probably shifts or the orig-

inal first post may not contain enough information and hence further clarifications

or elaborations are needed. Both cases are not in our problem definition.

• Authorship: Who would usually ask questions? Recent work shows that high quality

content is generated by highly authoritative authors in social media (e.g., Agichtein

et al. [4] and Hu et al. [100]). In our context, we consider high quality contents to

be answers and highly authoritative authors are users who usually answer others’

questions. Therefore, by contrast, fresh users are more likely to post questions rather

than answering questions and a large portion of total posts (including all replies) a

fresh user makes are likely all questions.

• N-gram: Carvalho and Cohen [37] suggested that n-grams would improve speech

acts analysis on E-mail. The task is similar to our work and therefore we would like

to see whether this feature works for discussion boards.
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In summary, we use the number of question marks, the number of each 5W1H words, total

number of posts within one thread and authorship (the number of posts one user starts

and the number of posts one user replies) as features.

Answer Detection: In this subtask, we focus on how to detect answer posts without

analyzing the content of each post using natural language processing techniques. We are

also interested in how non-content features can contribute to classification results.

• The position of the answer post: According to our definition of the problem, we

notice that the answer post usually appears not very close to the bottom if the

question receives a lot of replies.

• Authorship: Same as the last subtask.

• N-gram: Same as the last subtask.

• Stop words: Although “stop words” are usually regarded as “noise words”, we want

to see whether the author of answer posts would use more detailed and precise words

rather than “stop words”, in contrast to other types of posts such as elaborations,

suggestions and acknowledgement.

• Query Likelihood Model Score (Language Model): We use this basic language model

method to calculate the likelihood that a replied post is relevant to the original

question post. We use this feature as an example to show how a relevance-based

model performs in the task.

In summary, we use the position of the answer post, the authorship, N-gram, the count

of each stop word and the score of Query Likelihood Model as features.

Other methods: We principally compare our method with the approaches introduced

by Cong et al. [54], a recent work addressing a similar problem. To detect the questions,
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they used the supervised learning approach Sequential Pattern Mining. First, each sen-

tence is preprocessed by a POS tagger only leaving 5W1H words and modal words. Then

the sequential patterns are generated by a modified version of the PrefixSpan algorithm

[156] to incorporate both minimum support and minimum confidence, which are assigned

empirically. They treat all generated patterns as features. They considered “finding an-

swers” as a retrieval problem. The retrieval model they introduced is a graph-based model

incorporating inter-post relevance, authorship and the similarity between replied posts and

the first post. They showed two variations of the graph-based model; one that is combined

with the Query Likelihood language model and another combined with the KL-divergence

language model. We implement all these methods and compare them in our experiments.

Notice that they did not explicitly define what “question” or “answer” is. Therefore, our

task may be slightly different from theirs.

3.2.3 Experiments

We selected two discussion boards as our data sources. We crawled 721,442 threads from

Photography On The Net5, a digital camera forum (DC dataset), and 555,954 threads

from UbuntuForums6, an Ubuntu Linux community forum (Ubuntu dataset).

For the question detection subtask, we randomly sampled 572 threads from the Ubuntu

dataset and 500 threads from the DC dataset. We manually labeled all first posts in these

threads into question posts and non-question posts using our criteria introduced in Section

3. For the answer detection subtask, we selected 500 additional question-related threads

from both data sources. Therefore, we have 2,580 posts in total (including the first posts)

from the Ubuntu dataset and 3,962 posts in total (including the first posts) from the DC

dataset. We manually labeled all posts into answers and non-answers. We note that in

accordance with our problem definition, only one answer post per thread is labeled as such

5http://photography-on-the.net/
6http://ubuntuforums.org/
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(the remainder are labeled as non-answers).

We preprocessed all posts by modifying possible abbreviations into their full form (e.g.,

“we’re” into “we are”, “it’s” into “it is”) and stemming all words. For Sequential Pattern

Mining, the Stanford Log-linear Part-Of-Speech Tagger [188] was used and minimum

support and minimum confidence were set to 1.5% and 80% respectively. For N-grams, we

generated 3,114 N-grams (1-5 grams) from the Ubuntu dataset and 1,604 N-grams from

DC dataset for question detection while 2,600 N-grams from Ubuntu dataset and 1,503

N-grams from DC dataset for answer detection. For stopwords, we used 571 normal stop

words.7 We use LIBSVM 2.88 [39] as our classifier and all classification results are obtained

through 10-fold cross validation. In order to avoid classification bias and get better results,

we balanced our data into around 50% positive samples versus 50% negative samples in

all experiments. For example, we have 500 positive instances and 2080 negative instances

for answer detection on Ubuntu dataset. Therefore, we replicated the positive training

instances four times to give 2,000 examples (but left the test set unchanged). Since in

any real settings, the data is inherently skewed, a better learning approach such as cost-

sensitive learning may be more realistic. Table 3.1 shows all the features we used and

their abbreviations.

Question Detection: We first evaluate the performance of features introduced in sub-

section 3.2.2 individually. Table 3.3 gives the results of precision, recall, F-measure and

accuracy (sorted by accuracy) of the Ubuntu dataset and Table 3.4 shows the results from

the DC dataset. It is easily to notice that Length, 5W1H and Question Mark, three simple

heuristics, generally cannot give good performance while Sequential Pattern Mining always

outperforms these simple methods on both datasets, which validates the experiments

performed by Cong et al. [54]. Additionally, the results show that Authorship is a much

better heuristic and can achieve reasonable performance compared with Sequential Pattern

7http://www.lextek.com/manuals/onix/stopwords2.html
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Table 3.1: The Features and Their Abbreviations

Features Abbreviation

Question Mark QM

5W1H Words 5W

Total # Posts LEN

Sequential Patterns SPM

N-grams NG

Authorship AUTH

Position POSI

Query Likelihood Model LM

Stop Words SW

Graph+Query Likelihood Model GQL

Graph+KL-divergence Model GKL

Table 3.2: Example N-grams from DC Question Dataset

i do not know if i wa wonder if anyon

what is the best way i do not have

i am not sure do not know what

i am look for i can not

do not know would like to

Mining although it seems that performance may be highly dataset dependent. On both

dataset, N-grams achieves the best performance in all metrics in terms of a single type of

feature. This phenomenon suggests that users do use certain language patterns to express

problems and questions in discussion boards. Table 3.2 shows 10 sample N-grams extracted

from DC dataset that used for question detection. Note that the results are stemmed

words. Since N-grams and Sequential Pattern Mining (which requires a POS tagger) are

relatively complicated methods (vs. simple heuristics such as finding question marks and

5W1H words), the computational effort may be impractical for large datasets. In order to

avoid high computation methods, we do further experiments on the combinations of those

simple methods and see whether the performance can be improved and therefore we can

use simple combinations as alternatives.
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Table 3.3: Single Feature Ubuntu Question

Features Prec. Recall F1 Accu.

LEN 0.568 0.936 0.707 0.623

5W 0.613 0.759 0.679 0.651

QM 0.649 0.634 0.641 0.656

AUTH 0.700 0.725 0.712 0.716

SPM 0.692 0.829 0.754 0.738

NG 0.770 0.906 0.833 0.823

Table 3.4: Single Feature DC Question

Features Prec. Recall F1 Accu.

5W 0.601 0.429 0.500 0.579

LEN 0.564 0.730 0.636 0.590

QM 0.578 0.779 0.664 0.612

SPM 0.642 0.702 0.671 0.661

AUTH 0.723 0.791 0.755 0.748

NG 0.752 0.799 0.775 0.772

Table 3.5 and Table 3.6 show the combinations of simple features compared to N-

grams and Sequential Pattern Mining. We observe that the performance can be improved

by combining features. Specifically, Authorship+Question Mark+5W1H Words+Length

achieved similar or even better results than Sequential Pattern Mining on both datasets.

Notice that the computation of these features is much simpler than Sequential Pattern

Mining. In addition, Question Mark+5W1H Words+Length, which only require local

information, also achieved reasonable performance compared to those feature individually

since Authorship needs global information. From these results, we found that although

these features individually cannot give much evidence reflecting whether a post concerns

a question, the combination of them is able to characterize the first post and interestingly

none of these simple features attempts to understand the real semantics of the question

posts.

Answer Detection: For this subtask, we first did the experiments using individual
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Table 3.5: Combined Features Ubuntu Question

Method Prec. Recall F1 Accu

QM+LEN 0.657 0.655 0.656 0.666

AUTH+LEN 0.679 0.757 0.716 0.708

5W+LEN 0.673 0.821 0.740 0.719

QM+5W 0.756 0.636 0.691 0.723

QM+5W+LEN 0.744 0.701 0.722 0.738

SPM 0.692 0.829 0.754 0.738

AUTH+QM+5W+LEN 0.731 0.762 0.746 0.748

NG 0.770 0.906 0.833 0.823

Table 3.6: Combined Features DC Question

Method Prec. Recall F1 Accu.

QM+5W 0.614 0.764 0.681 0.648

5W+LEN 0.627 0.709 0.666 0.650

SPM 0.642 0.702 0.671 0.661

QM+LEN 0.656 0.764 0.706 0.687

QM+5W+LEN 0.672 0.755 0.711 0.698

NG 0.752 0.799 0.775 0.772

AUTH+LEN 0.813 0.874 0.843 0.839

AUTH+QM+5W+LEN 0.863 0.889 0.876 0.876

features, as we did in Question Detection. In order to compare with the methods intro-

duced by Cong et al. [54], we used the ranking score from their retrieval models as a feature

to train our classifier. Since Graph-based model+Query Likelihood Model and Graph-based

model+KL-divergence Model performs similarly on both datasets, we only use Graph-based

model+Query Likelihood Model in this subtask as an example. Table 3.7 and Table 3.8

show the experimental results. In general, Language Model and Graph+Query Likelihood

Model did not perform well using the ranking score as features. The possible reason is

that these methods are mainly based on relevance retrieval models, which aim to find the

information most relevant to the query (in our case, the question posts). Since all posts

within a question thread may be more or less relevant to the question, it is difficult to
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Table 3.7: Single Feature Ubuntu Answer

Method Prec. Recall F1 Accu.

GQL 0.673 0.575 0.620 0.650

Stopword 0.665 0.617 0.640 0.655

NG 0.690 0.638 0.663 0.678

LM 0.717 0.650 0.682 0.699

POSI 0.743 0.730 0.737 0.712

AUTH 0.715 0.823 0.765 0.721

Table 3.8: Single Feature DC Answer

Method Prec. Recall F1 Accu.

GQL 0.661 0.535 0.591 0.628

LM 0.726 0.603 0.659 0.685

AUTH 0.680 0.800 0.735 0.710

NG 0.735 0.680 0.706 0.716

Stopword 0.730 0.696 0.712 0.717

POSI 0.780 0.88 0 0.827 0.815

rank them and distinguish the best answers from others based on content relevance or

similarity measurement. In addition, relevance-based models may unable to handle big

lexical gaps between questions and answers. We show one example from UbuntuForums

below:

Table 3.9: Combined Features Ubuntu Answer

Method Prec. Recall F1 Accu.

LM+GQL 0.726 0.718 0.722 0.695

Stopword+NG 0.735 0.786 0.760 0.726

LM+POSI 0.733 0.812 0.770 0.733

LM+Stopword 0.758 0.764 0.761 0.735

LM+AUTH 0.739 0.840 0.786 0.748

POS+Stopword 0.785 0.811 0.798 0.773

LM+POSI+Stopword 0.785 0.814 0.799 0.774

LM+POSI+AUTH 0.929 0.964 0.946 0.940

POSI+AUTH 0.935 0.969 0.952 0.946
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The first post:

can any one help me load ubuntu 8.10 on to my pc? i have a asus AS V3-

P5V900 but when i load from cd it keeps crashing , i think i dose not reconise

the graphics card. when i boot from cd it asks me what lauguge ENGLISH then

when try to load it crash again i have tryed help and put in via=771 any help

please ?

The answer post:

You might try using the ”Alternate” install CD:

http://www.ubuntu.com/getubuntu/downloadmirrors#alternate

Notice that this answer post contains a web link while all “keywords” (e.g., ubuntu 8.10,

asus AS V3-P5V900, crash and etc.) in the first post do not appear in the answer post.

If we calculate Query Likelihood Model score for the answer post, nearly all words in

the question post can only receive “background” smoothing score and hence the model

would rank this post “irrelevant”. Essentially the same situation happens when using

similarity measurement (e.g., cosine similarity). N-gram did not outperform other features

in this subtask, which suffers from various expressions in answer posts. Interestingly, the

Stopword approach has performance similar to N-gram in both datasets. N-gram usually

requires more computational effort than Stopword since Stopword has a fixed number

of features for all datasets while N-gram needs to be generated separately and usually

contains thousands of features. Therefore, in our later experiments, we use Stopword

instead of N-gram. We also note that Authorship and Position, two simple heuristics,

perform reasonably well and achieve comparatively high F1-Score on both datasets.

Inspired by question detection subtask, we conducted experiments using combinations

of features on the two datasets. Tables 3.9 and 3.10 provide the corresponding results.
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Table 3.10: Combined Features DC Answer

Method Prec. Recall F1 Accu.

LM+GQL 0.735 0.594 0.657 0.688

LM+AUTH 0.700 0.771 0.734 0.719

Stopword+NG 0.737 0.688 0.712 0.720

LM+Stopword 0.765 0.717 0.740 0.747

LM+POSI 0.780 0.879 0.827 0.815

LM+POSI+Stopword 0.846 0.899 0.872 0.867

POSI+Stopword 0.846 0.901 0.873 0.868

LM+POSI+AUTH 0.951 0.991 0.970 0.970

POSI+AUTH 0.958 0.993 0.975 0.975

In this subtask, we not only combine simple heuristics but also combine non-

content features and content-based features. The first interesting finding is that Posi-

tion+Authorship outperforms all other feature combinations and greatly improves the

performance. This would explain that senior members usually answer questions in certain

positions (e.g., near to the top post). This combination is easy to compute and there

are no other parameters to tune. In order to better understand how these two features

contribute to the final results, we plot them in Figure 3.1 and Figure 3.2 for both datasets.

The X-axis shows the ratio of the number of starting posts versus follow-up posts for users

who answered questions in our datasets. The Y-axis shows the ratio of the position of

answer posts from the top of the thread versus to the bottom. Both figures demonstrate

the obvious signal that most answer posts are close to the top when the author of these

posts are senior users who usually write replies rather than starting posts.

We also notice that the combination of content-based features (e.g., Language Model,

Stop words) and non-content features (e.g., Position, Authorship) may also get better

results compared to Table 3.9 and Table 3.10. The Position+Stopword combination per-

formed reasonably well on both datasets, only requires local information, and is simpler
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Figure 3.1: Authorship and Position on Ubuntu
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Figure 3.2: Authorship and Position on DC
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Table 3.11: Ranking Scheme

Ubuntu DC

Method P@1 MRR P@1 MRR

LM 0.352 0.559 0.274 0.468

GQL[54] 0.360 0.570 0.220 0.414

GKL[54] 0.358 0.556 0.223 0.415

POSI+AUTH 0.902 0.949 0.928 0.964

than any kind of relevance-based features. In general, we can see that performance ben-

efits from a combination of features, especially those simple features. Additionally, the

combination of non-content and content features also improves performance significantly.

Other Experiments: We also propose a simple ranking scheme based on the clas-

sification method. The ranking score is simply computed by linearly combining position

and authorship information:

s = α ∗ V1 + (1− α) ∗ β ∗ V2 + (1− α) ∗ (1− β) ∗ V3

where V1,V2 and V3 are scores from classifiers of combination of position and authorship,

position only and authorship only respectively. α and β are empirical parameters and we

set 0.6 to both of them. Table 3.11 shows the results compared to basic Query Likelihood

Language Model, Graph-based+KL-divergence model proposed by [54] in terms of Preci-

sion@1 and Mean Reciprocal Rank (MRR) where MRR is the mean of the reciprocal ranks

of the answers over a set of questions. Our ranking scheme outperforms other previous

relevance-based approaches.

3.2.4 Summary

In this section we defined the problem of selecting Question and Answer post pairs from

discussion boards and addressed it as a classification problem. The contributions include:
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1. We show that the use of N-grams and the combination of several non-content features

can improve the performance of detecting question-related threads in discussion

boards.

2. We show that the number of posts a user starts and the number of replies produced

and their positions are two crucial factors in determining potential answers.

3. We show that relevance-based retrieval methods would not be effective in tackling

the problem of finding possible answers but the performance can be improved by

combining with non-content features while we treat retrieval scores as features.

4. Using classification results, we are able to design a simple ranking scheme that

outperforms previous approaches when retrieving potential answers from discussion

boards.

This section explicitly defines the problem of selecting question answering post pairs from

discussion boards and shows better performance compared to previous approaches. We

believe that this is a first step toward a better understanding of the interaction of question

answering in such media.

3.3 Mining Participant Reputation in CQA

In the previous section, we explored a number of content features that can improve the

performance of a certain information filtering task in CQA. One aspect left is how users’

reputation impact the task. In this section, we discuss this direction.

Community-driven Question Answering (CQA) has existed for decades as part of bul-

letin board systems and Usenet, but has recently been popularized within web portals in

which users answer questions posed by other users. CQA has proven to be more effective

since users can post natural language questions rather than issuing several word queries to
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search engines. One typical example of a CQA system is Yahoo! Answers, which already

attracts tens of millions of users and stores hundreds of millions of questions and answers

[129]. Unfortunately, users may post similar or identical questions multiple times and the

quality of answers varies drastically. Recent work [24] shows that a large portion of con-

tent in CQA is not useful for users. On one hand, it is not appropriate for users to re-post

existing questions. On the other hand, users may find it difficult to browse within the

large question-answer archive. Therefore, there is of increasing interest to build retrieval

mechanisms to automatically search in a question-answer archive and provide high quality

content to users.

Not surprisingly, much research work (e.g., [4, 93]) has shown that reputation of users

are good indicators of the quality and reliability of the content. Many ranking schemes

which take advantage of user reputation (e.g., [223, 110, 4]) have been proposed to provide

search results to users. The assumption behind these methods is that highly authoritative

users may provide high quality content. Since the naturally bipartite structure of CQA

where users who post questions and users who provide answers can be seen as two sub-

communities within CQA, several ranking approaches (e.g., [223, 110]) derived from the

HITS algorithm [118] have been shown to improve retrieval performance. However, there

is no evidence to show whether this is the most effective way to model users’ expertise.

In addition, PageRank-like ranking schemes are less often used to model reputation in a

CQA context. One possible reason is that it is relatively difficult to see whether CQA

has the “hierarchical ranking structure” that PageRank provides where the reputations of

users depend not only on the number of questions and answers a participant produces but

also on with whom the user interacts, compared to naturally bipartite structure of HITS.

In this section, we discuss how to use PageRank to model user reputation in CQA. We

view the link between users as reflecting the likelihood of one user providing an answer to

the other. In addition, we introduce topical link analysis [152], which has shown success
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in modeling web page authority, into CQA and show how to incorporate topical informa-

tion. Our specific contributions include: 1) The use and justification of a PageRank-based

method for user reputation modeling in CQA; 2) The introduction of topical link analysis

for user reputation modeling in CQA. The method does not use any site-specific features

and can be easily applied to other social media; 3) Showing how probabilistic Latent

Semantic Analysis (pLSA) can be embedded into user reputation modeling; 4) A com-

parative study of several popular user reputation modeling schemes in terms of retrieving

best answers in Community Question Answering services.

In subsection 3.3.1, we review several existing user reputation modeling schemes and

discuss how to use PageRank in CQA. In subsection 3.3.2, we discuss topical link analysis

in CQA and its challenges. Subsection 3.3.3 describes experimental results showing the

effectiveness of different ranking schemes. Subsection 3.3.4 provides discussions and future

work.

3.3.1 User Reputation Model Review

We first review several user reputation models based on link analysis and simple heuristics.

HITS-like scheme: Kleinberg [118] identifies two important properties for a web

page: hubness and authority, and proposes a mechanism to calculate them effectively.

The basic idea behind HITS is that pages functioning as good hubs will have hyperlinks

pointing to good authority pages, and good authorities are pages to which many good hubs

point. Authority and hub scores of a web page can be computed via mutual reinforcement,

which can be described as follows:

A(i) =
∑

j:j→i

H(j) (3.1)

H(i) =
∑

i:i→j

A(j) (3.2)
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If we treat each user as a node and if user i answers a question posted by user j, there will

be a link pointing from i to j. Therefore, a user who often posts good questions which

receive informative answers will have many in-links and a user who often answers questions

from others will have many out-links, indicating that the first type of users displays the

hubness property and the second type shows authority. Using Equations 3.1 and 3.2, we

can calculate hub and authority scores for each user in CQA. Sometimes, however, we need

a single score to represent the rank of a user. For example, when combining other models

(e.g., relevance models), a single user rank score may help us simplify our overall model.

One easy way is to combine them in a linear fashion, which is used in our experiments:

UserRank(i) = γ ∗A(i) + (1− γ) ∗H(i)

where γ is a manually tuned balancing parameter to control the relative importance be-

tween authority scores and hubs scores.

PageRank-like scheme: Page et al.’s PageRank [153] is a static ranking of web pages

based on the measure of prestige in social networks. PageRank can be seen as a random

surfer model in which a surfer on a given page i can choose with probability (1 − d) to

select uniformly one of its outlinks and with probability d to jump to a random page from

the web. The PageRank score of node i is defined as the stationary probability of finding

the random surfer at node i. One formulation of PageRank is:

PR(i) = (1− d)
∑

j:j→i

PR(j)

O(j)
+ d

1

N
(3.3)

PageRank is not a popular choice to model user reputation in the context of CQA. One

possible reason is that there is no obvious evidence implying that ranking with hierarchical

structures is better than the bipartite structure used in HITS (or even as effective). In
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addition, Equation 3.3 indicates that a node would share its PageRank score by uniformly

distributing the value to each out-going link. However, if we treat each user as a node

and there would be a link from user i to j if j answers a question posted by i, it does

not make much sense that user i would share its importance to user j since user j should

have higher expertise because of answering questions. Furthermore, PageRank needs to

randomly “jump” to any page on the Web even when there is no hyperlink between them.

This lacks an intuitive explanation since it is difficult to think about a user who can share

authority with other users with whom the user never interacts.

In this chapter, we think about the links between user nodes as the possibility that

interactions could happen between users. If no interactions ever happen between two

users, they still might invoke interactions in the future with a certain low probability,

captured by the “random jump” part of PageRank. If they already have interactions, the

probability of their future interactions would be higher than random and indicated by the

number of existing interactions, which is captured by “out-going links” part of PageRank.

Therefore, the PageRank score of a user measures the activeness of this user.

Other Heuristics: Zhang et al. [223] proposed a heuristic ranking scheme called Z-

Score that is based on the number of questions and answers one user generates. Z-Score

is calculated as follows:

Z =
a− n/2√
n/2

=
a− q√
a+ q

where a is the number of answers provided by one user, q is the number of questions

produced by one user, and n is the sum of a and q. Zhang et al.’s rationale for the

heuristic is to measure the difference in behavior from a “random” user who posts answers

with probability p = 0.5 and posts new questions with probability 1 − p = 0.5. If the

user equally asks or answers questions, the z-score will be close to 0. A positive z-score
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captures a user who asks answers more than asks. Another simple heuristic is derived

from Hong and Davison [93] in which the authors found that the number of posts a user

generates and the number of replies a user provides are two good indicators for the user

reputation in forums. Here, we use the linear combination of the number of questions and

answers a user generates as the model of reputation:

SimpleRank = θ ∗ a+ (1− θ) ∗ q

where a is the number of answers one user provides and q is the number of questions that

user produces. The parameter θ is used to control whether we emphasize the capability to

post new questions or to answer questions for a user. In our experiment, we use θ = 0.8

to focus on the capability to answer questions.

3.3.2 Topical Link Analysis for User Reputation

So far, all user reputation models we reviewed are trying to give a “global” user reputation

score, which means that the score represents the user’s authority across all topics. How-

ever, one may argue that an expert in Computer & Internet may not give good suggestions

in Gardening. Obviously, it is better to give authority scores according to different topics

and rank user reputations differently. That is why some ranking schemes are designed to

take topical information into account, such as Topic-Sensitive PageRank [83]. Here, we

review Topical PageRank [152], one successful topical ranking scheme, and discuss how to

adapt it into the context of user reputation modeling in CQA.

Topical PageRank: The main motivation of Topical PageRank is that the authority

score of a web page should be modeled with respect to different topics. The basic idea of

Topical PageRank is to incorporate topic distribution into the representation of each web

page as well as the importance score of each page. Therefore, two vectors are associated
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with each page: the content vector and the authority vector. The content vector cu is a T -

dimensional distribution over topics, representing the content of page u, solely determined

by content itself. The authority vector au ∈ R
T , a distribution over the same set of topics,

is used to measure the importance of the page where auk
is the importance score on topic

k.

Topical PageRank is also a random surfer model. On each page, the surfer may either

follow the outgoing links of the page with probability 1 − d or jump to a random page

with probability d. When following links, the surfer may either stay on the same topic to

maintain topic continuity with probability α or jump to any topic i on the target page

with probability 1−α. The probability of jumping to topic k is determined by cuk
. When

jumping to a random page, the surfer is always assumed to jump to a random topic k.

Therefore, the authority score (i) on page u is calculated as follows:

aui
= (1− d)

∑

v:v→u

αavi + (1− α)cviav

O(v)
+
d

N
cui

where av =
∑

avi . Note that Nie et al. [152] also proposed a topical version of the HITS

algorithm, which may be interesting to adapt into CQA in future work.

Adapting Topical PageRank to CQA: One question for Topical PageRank is how

to obtain the content vector cu. In [152], a text classifier trained on the pages selected

from the twelve top categories (e.g., Arts, Computers, Games) of the dmoz Open Directory

Project (ODP) was used. For CQA, a fine-grained topic distribution like Software and

Hardware is needed, which is usually hard to obtain. In order to adapt Topical PageR-

ank for CQA, we propose to use an unsupervised learning algorithm to obtain a content

vector. In this work, we use probabilistic Latent Semantic Analysis (pLSA) [87], a simple

unsupervised topic modeling method. pLSA is a generative model in which documents

are not “hard” classified to topics but characterized by a mixture of topics with weights.
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The model is to maximize the log-likelihood function

L =
∑

d

∑

w

n(d,w) log P (d)
∑

z

P (w | z)P (z | d)

where n(d,w) denotes the number of times w occurred in d. The standard computation

procedure for maximum likelihood estimation in latent variable models is the Expectation

Maximization (EM) algorithm. We do not include details of EM here and readers who

are interested can refer to the tutorial in Hong [89].

After knowing the topic distribution of each document (here, in CQA, each question

and each answer can be seen as one document), we want to know the topic distribution

of each user if we treat users as nodes. One simple way is to add the topic distribution of

each document one user Ui generates together. Therefore,

P (z|Ui) =
∑

d∈Q(Ui)

P (z|d)

where Q(Ui) represents all the documents user i produces.

Another approach is to introduce a new variable u into the pLSA model to represent

users. Therefore, the log-likelihood function is :

L =
∑

u

∑

d

∑

w

n(d,w, u) log P (d)
∑

z

P (u | z)P (w | z)P (d | z)

The advantage of this approach is that we can directly obtain the topic distribution for

each user through the EM algorithm. However, this would require more computation,

especially for large-scale data. In this work, we do not introduce the new variable and

focus instead on the simpler method.
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3.3.3 Experimental Method

We will compare several ranking schemes, including what we introduced in previous sec-

tions. We crawled 59,936 posts from Yahoo! Answers through its API, where 14,122 are

questions and 45,814 are answers. Among all answers, 12,731 are selected as “best an-

swers” by users to particular questions. 37,940 unique users are extracted from the dataset.

Since we do not have real queries that users issued in Yahoo! Answers for searching the

question answer archive, we treat each question in our dataset as a query and all answers

as potential answers to the query. Therefore, we have 12,731 questions as queries and

their corresponding best answers as relevant results. (We do not consider those questions

that have no best answers.) We want to measure ranking schemes in two ways. First, we

want to see whether a ranking scheme can return the best answer early in the return-list.

Second, we want to see whether the ranking scheme can return more best answers higher

than other answers. Specifically, we are looking at these metrics:

• Precision@1(Strict): If the question has the answer selected as the best answer, this

best answer should return at the first place if we use the whole question as a query.

• Mean Reciprocal Rank (MRR): Same as the metric above, we want to see the position

where the best answer ranked if the question has the best answer chosen by the user.

The above two metrics are strict metrics since each question (or query) only has one

answer (or relevant result). In order to evaluate ranking schemes for our second goal, we

relax the constraint of returned answers by treating all best answer as relevant results.

• Precision@1(Relaxed): We only want to see whether the top result is a best answer

regardless whether it is the best answer selected for the query or not.

• Precision@10: We want to see how many results in top 10 positions are best answers.
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Table 3.12: Results of BM25

P@1(S) MRR P@1(R) P@10 MAP

0.0857 0.1414 0.3410 0.3170 0.3081

• Mean Average Precision (MAP): We sum the precision score whenever a new best

answer is retrieved and average all scores across all queries (questions).

Since we need to calculate the relevance score for each answer, user reputation model

itself is not enough. We combine user reputation model with the Okapi BM25 weighting

function. For each answer, we calculate two rankings, one from BM25 and the other one

from a user reputation model and combine them with a simple weighted sum:

λ ∗ rankBM25(a) + (1− λ) ∗ rankUSER(a)

Results: Unsurprisingly, the parameter λ affects the final results. Thus, for each

method and metric, we show how this parameter influences the ranking results. The results

of only using BM25 are shown in Table 3.12, where P@1(S) indicates Precision@1(Strict)

and P@1(R) indicates Precision@1(Relaxed). We do not include the results of Z-Score

in the following discussions since it performs worst in our experiments and the values

for each evaluation metric is low. Figure 3.3 and 3.4 show the result of using “Strict

Metrics” as λ is varied from 0.8 to 0.9. Two obvious observations can be quickly obtained.

First, all the results are worse than using the BM25 ranking result alone. The reason

may be that sometimes the best answer could be produced by users that might not be

the first authoritative user (e.g., may be second or third). Since “Strict Metrics” only

measure whether the best answer can be retrieved or not, we argue that the results

may not reflect what would happen in real world where users often issue short queries

that are less likely to match a whole question. However, this result does give us hints
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Figure 3.3: P@1 (Strict)

about how different ranking schemes perform in terms of “Strict Metrics”, which leads

to the second observation that PageRank-like approaches perform better than HITS-like

schemes and other heuristics. HITS-like schemes cannot capture the notion of “hierarchical

authorities”, which means that the user who can answer a question posted by an authority

should have higher authority score. PageRank-like approaches naturally model this notion

and give better approximation than HITS.

Relaxed Metrics: If we use “Relaxed Metrics”, Figures 3.5, 3.6 and 3.7 show that

all ranking methods combined with BM25 can improve retrieval performance significantly,

which validate the conclusions from other related work that user reputation models can

help retrieval tasks in CQA. PageRank-like approaches still outperform simple heuristics

and the HITS-like scheme. The results also indicate that SimpleRank performs similarly
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Figure 3.4: MRR

to the HITS-like scheme. This is more evidence that HITS cannot model “hierarchi-

cal authorities” as discussed above. One interesting observation is that as λ increases,

P@1(Strict), P@1(Relaxed) and MRR also increase but P@10 and MAP decrease. Be-

cause the first three metrics only focus on one answer (or relevance result) per question

(or query), as we discussed before, user reputation modeling may not help much and

P@1(Strict) and MRR are actually worse than only using BM25. On the other hand, if

we care about returning more relevant results, P@10 and MAP show the value of user

reputation modeling and indicate a significant improvement.

Topical PageRank: For Topical PageRank, we use pLSA as our topic model and

specify 20 latent variables (topics). Since our dataset is from the Computer & Internet

category of Yahoo! Answers, which has 7 sub-categories, we arguably think the number of
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Figure 3.5: P@1(Relaxed)

latent variables (topics) would necessarily cover major topics. However, this number can

be given by the number of positive singular values of the word-chunk matrix, a popular

technique used in text mining [51].

In all previous figures in experiments, PageRank and Topical PageRank perform sim-

ilarly and we want to see whether there is a significant difference or not. We perform a

t-test on each evaluation metric, showing that Topical PageRank does significantly better

than PageRank on P@1(Strict), MRR and P@1(Relaxed) (p-value=0.05) while PageRank

does significantly better than Topical PageRank on P@10 and MAP (p-value=0.05). The

possible reason that Topical PageRank performs better on those metrics that only consider

one result per query is that Topical PageRank can capture the notion that certain users

only have expertise on some topics. So a user may not be an overall computer expert
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Figure 3.6: P@10(Relaxed)

but can provide several good answers just for hardware repair. In other words, PageRank

would average the authority score for all topics and therefore give better approximation

for more macro-level evaluation metrics such as P@10 and MAP. Another reason that

the results of PageRank and Topical PageRank are close is that our dataset only consists

of questions and answers in one main category, Computer & Internet. Compared to [152]

where they used topics of the top level of the ODP hierarchy, the difference between topics

in our dataset is relatively small. You can imagine that a good expert in Computer may

not be an authority in Sports but we probably need to agree that a good expert in Com-

puters may also be an expert in Computer Software. In this case, Topical PageRank shows

similar performance as PageRank itself. However, we postulate that if a more topic-diverse

dataset is used, Topical PageRank would provide more benefit than PageRank because
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Figure 3.7: MAP(Relaxed)

Table 3.13: Results of different α

α P@1(S) MRR P@1(R) P@10 MAP

0.70 0.0225 0.0476 0.4450 0.4334 0.3229

0.75 0.0223 0.0475 0.4447 0.4335 0.3229

0.80 0.0223 0.0475 0.4458 0.4336 0.3229

0.85 0.0224 0.0475 0.4460 0.4336 0.3230

0.90 0.0221 0.0473 0.4456 0.4337 0.3230

this less diverse dataset already shows the improvement of Topical PageRank. Since Top-

ical PageRank has a parameter α to indicate the probability of whether to stay on the

topic or jump to other topics, we choose several different α values to see how this param-

eter influences our experimental results. In this set of experiments, we also combine the

ranking with BM25 where λ is chosen as 0.88, the value at which the best performance of

Topical PageRank is achieved. Table 3.13 details the results. Obviously, different α values
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do not influence final ranking results much. We think it is due to the lower diversity of

our dataset since “jumping” to other topics would still remain in Computer & Internet.

3.3.4 Summary

In this section, we reviewed two popular ranking schemes, HITS and PageRank, and

their applications in user reputation modeling. Due to the naturally bipartite structure

of CQA, the HITS scheme and its variations attract more attention in related work and

they do improve retrieval performance according to our experiments. On the other hand,

we discussed the possibility of using a PageRank-like scheme and introduced topical link

analysis into user reputation models. We showed how to incorporate unsupervised topic

analysis, in our case pLSA, into topical link analysis. The performance of PageRank and

Topical PageRank is much better than HITS and other heuristics in our experiments, which

indicates a “hierarchical property” of user reputation. In addition, Topical PageRank is

slightly better than PageRank in P@1(Strict) and MRR. We also found that while in

general user reputation can help retrieval performance when incorporated with BM25, the

performance of returning the exact best answer to a particular question (P@1(Strict) and

MRR) decreases. We view this problem as a difficulty that most user reputation models

give a “global” reputation for a user which may not reflect the authority of a user in certain

topics. Additionally, BM25 plus user reputation models may not be a good approach to

the Question Answering task but are good indicators for returning high quality content

(which is different from Question Answering!).

3.4 Bibliographic Notes

Although discussion boards are a popular destination for users looking for help, relatively

little research directly addresses the problem of mining question answering content from

62



www.manaraa.com

discussion boards.

Cong et al. [54] was the first to address a problem similar to what we discuss in this

chapter. They developed a classification-based method for question detection by using

sequential pattern features automatically extracted from both questions and non-questions

in forums. They preprocessed each sentence from the first posts by applying a Part-Of-

Speech (POS) tagger while keeping keywords including 5W1H (What, When, Why, Where,

Which and How) words and modal words. The sequential pattern features are based on the

results of the POS tagger. Though achieving reasonable performance, this approach suffers

from the typically time-consuming POS analysis process. More importantly, the definition

of “questions” in their work is slightly different from our work. They focused on question

sentences or question paragraphs while we treat the first post as a whole if it is about a

question. For the subtask of finding answers, they proposed an unsupervised graph-based

approach for ranking candidate answers leveraging the relevance between replied posts,

the similarity between the replied post and the first post, and author information as well.

Our method outperforms their approach both in effectiveness and efficiency.

A second related work is that of Ding et al. [60] who proposed a general framework

based on Conditional Random Fields (CRFs) to detect the contexts and answers of ques-

tions from forum threads. They did not address the question detection subtask in the

work and their approach is a complicated method that may not apply to larger datasets.

Some features they used within the framework are the same as what we used in this chap-

ter. However, they did not provide a careful comparison of those features and show how

different features contribute to the results.

In addition to these two directly related papers, there is some research on knowledge

acquisition from discussion boards. Zhou and Hovy [228] presented a summarization

system utilizing the input-reply pairs extracted from online chat archives. Their system

is not specifically designed for question answering content. Feng et al. [71] proposed
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a system to automatically answer students’ queries by matching the reply posts from

an annotated corpus of archived threaded discussions with students’ queries, which is a

different problem from our work. Huang et al. [101] presented an approach for extracting

high-quality ¡thread-title, reply¿ pairs as chat knowledge from online discussion boards so

as to efficiently support the construction of a chat-bot for a certain domain. They also

did not focus on question related threads in discussion boards.

Other previous work tried to understand and mine discussion boards for more general

purposes. Antonelli and Sapino [12] proposed a system to classify discussion threads

based on rules derived by using both speech acts and graph analysis. Although their

system can identify questions and answers as well as other types of threads, their dataset

was small and they only provided precision measures in their experimental results. Kim et

al. [114, 113] and Feng et al. [72] used speech acts analysis to mine and assess discussion

boards for understanding students’ activities and conversations. They used only a small

dataset and did not address question answering content in their work. Lin and Cho [134]

introduced several techniques to preprocess questions extracted from discussion board

including “garbage text” removal, question segmentation and merging questions. They

did not discuss how to identify question content and their answers. Shrestha et al. [179]

detected interrogative questions using a classification method and built a classifier to find

answers using lexical features based on similarity measurement and email-specific features.

Compared to the problem we address, extensive research has been done on QA services

like Yahoo! Answers or other Frequent Asked Questions (FAQ) services. Jeon et al. [106,

105], Duan et al. [62], and Cao et al. [35] tackled the problem of finding questions in the

QA services that are semantically similar to a user’s question. Song et al. [185] proposed

a metric “question utility” for studying usefulness of questions and showed how question

utility can be integrated into question search as static ranking. Jeon et al. [107] presented a

framework for using non-textual features like click counts to predict the quality of answers,
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incorporated with a language modeling-based retrieval model. Surdeanu et al. [187], Xue

et al. [212], Berger et al. [22], Jijkoun et al. [108], and Riezler et al. [169] described

various retrieval models or systems to extract answers from QA or FAQ services. Liu et

al. [138] proposed automatic summarization techniques to summarize answers for re-use

purposes. Gyongyi et al. [80] performed an analysis of 10 months of Yahoo! Answers data

that provided insights into user behavior and impact as well as into various aspects of

the service and its possible evolution. Some of the above work is complementary to our

approach, and therefore could be employed to enhance our methods but in general all

work above does not need to detect questions.

Traditional Question Answering tasks in TREC style have been well studied; see for

example Vorhees [192]. That work mainly focused on constructing short answers for a

relatively limited types of questions, such as factoid questions, from a large corpus. This

makes it possible to identify the answer type. In contrast, typical questions extracted

in discussion boards are more complex and usually consist of multiple sentences or even

several paragraphs, and it is also difficult to represent and identify answer types for those

questions.

Community-based Question Answering (CQA) has become an active research area.

Much of the work has focused on Yahoo! Answers due to its popularity. Song et al. [185]

propose a metric “question utility” for studying usefulness of questions and showed how

question utility can be integrated into question search as static ranking. Various retrieval

models or systems had been proposed (e.g., [187, 212]) to extract answers from QA or

FAQ services. Jeon et al. [107] present a framework for using non-textual features like

click counts to predict the quality of answers, incorporated with a language modeling-

based retrieval model. Agichtein et al. [4] presented a supervised approach to mining user

interaction and content-based lexical features to identify high quality content in CQA. Bian

et al. [23] develop a ranking system to retrieve relevant and high-quality answers. Most
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models above do not explicitly integrate content quality and user reputation information

into the ranking process. Hong and Davison [93] show that user authority is a good

indicator for retrieving answers from discussion boards. Zhang et al. [223] applied both

ExpertiseRank and HITS to identify users with high expertise. Jurczyk and Agichtein

[110] show an application of the HITS algorithm to a CQA portal, especially the user

interactions graph, and show a positive correlation between authorities calculated with

the HITS algorithm and answer quality. Zhou et al. [227] propose a method for co-ranking

authors and their publications using their networks. Most of the works discussed above

do not provide a comparative study of how their ranking scheme outperforms others. At

the same time, most ranking schemes are based on the HITS algorithm.

Two of the most prominent link analysis algorithms, PageRank [153] and HITS [118],

have been shown to be successful in the context of evaluating quality of Web pages. Nie et

al. [152] proposed Topical PageRank and Topical HITS which embed topical information

when propagating authority scores. They showed that topical PageRank and topical

HITS outperform PageRank and HITS respectively. As far as we know, no research work

has shown whether these ranking schemes can be applied to user reputation modeling

especially in the context of CQA.
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Chapter 4

Global Information Filtering in

Twitter

4.1 Introduction

In the previous chapter, we explored basic information filtering in CQA portals. Although

CQA portals are vital to meet numerous users’ information need, micro-blogging sites have

emerged as an important alternative type of online conversational media for users to share

information in recent years. Starting from this chapter and following several chapters, we

focus on the problem of information filtering in micro-blogging services, and Twitter in

particular. Social network services such as Facebook, Myspace and Twitterhave become

important communication tools for many online users. Such websites are increasingly

used for communicating breaking news, eyewitness accounts and organizing large groups

of people. Users of these websites have become accustomed to receiving timely updates

on important events, both of personal and global importance. For example, Twitter was

used to propagate information in real-time in many crisis situations such as the after-

math of the Iran election (June, 2009), the tsunami in Samoa (September, 2009) and the
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Haiti earthquakes (January, 2010). Many organizations and celebrities use their Twitter

accounts to connect to customers and fans.

The social aspect of Twitter and similar websites is given by the fact that each user can

connect to other members, forming a network of relationships. In Twitter, the network of

connections is a directed graph and thus users can receive updates from accounts which

would not otherwise reciprocate the relationship. An important characteristic of micro-

blogging websites is that users receive messages strictly from their direct friends (whom

they are following). Therefore, the amount of information as well as the overall quality of

these messages one user receives would highly depend on whom he or she follows. Some

problems may arise due to this paradigm of information flows induced by the social graph.

For those users who follow a large number of friends, the amount of messages they receive

daily would easily exceed their capability to handle, causing the problem of information

overload. Hence, in this case, it is crucial to filter out trivial messages while leaving

the ones that users really care about. On the other hand, for those users who do not

have enough friends to follow, important messages will hardly reach them, potentially

making users gradually lose interest in the service. Therefore, it is useful to recommend

some interesting and popular messages to users, possibly attracting them to follow new

users. Both problems require us to determine the value of individual messages and their

popularity.

In Twitter, popular messages are mostly shared among users in two forms. One is that

users can propagate important or interesting messages in the social graph by “retweeting”

other people’s messages. A retweet is normally a copy or a variant of the original message,

sometimes with the username of the original author appended to it. This type of message

is vital for the flow of information within the network, as users can get exposed to ideas

recommended by their friends. Messages can “travel” long distances in the social graph

through a series of retweets, forming a retweet tree that starts from the original author
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of the message, described in Kwak et al. [125]. It is common for popular messages to be

retweeted thousands of times in a very short period of time. Another form of popular

messages is that users share external URLs by posting links messages because of the

length limitation of Twitter messages. In this case, if a link is posted by different people

numerous times, we would consider that the link and the information behind the link

become the keystone for the propagation. We denote this form as “URL sharing”. Thus,

the problem of determining the value of a message can be converted into the question of

whether a message will be retweeted, and whether the URL in a message will be shared in

the future. We address both problems by utilizing machine learning techniques to predict

if and how often new messages will be retweeted and a URL will be shared in the future.

We believe that a system that can predict such messages could be able to determine

messages with potential to be become breaking news. In addition, those popular messages

could be delivered earlier to the users, thus short circuiting and speeding the delivery of

relevant information. Studying the propagation of popular messages can provide insights

on both the social network and on particular individuals. In addition, we can view popular

messages and which reach many parts of the network to be important to the community

as a whole. Also, at an individual level the popular messages of users can shed light into

their interests. It is therefore valuable to determine the characteristics of messages which

become popular as opposed to messages which get lost in the sea of information.

Our approach to tackle the problem is to treat it as a classification task. We train

classifiers with positive and negative examples of messages which will be retweeted in

the future and which contain URLs which are shared in the future. To build such kind

of classifiers, we investigate a wide spectrum of features to determine which ones can be

successfully used as predictors of popularity, including the content and topical information

of messages, graph structural properties of users, temporal dynamics of popular messages

and meta-information of users and messages as well. Our experiments are conducted on
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Figure 4.1: “Retweet Chains”

two massive real-world datasets and the results suggest that we can successfully predict

whether a message will be popular or not and its volume with good predictive performance.

In this chapter, we try to answer the following questions:

• What features are useful for predicting popular messages?

• Are the features for low volume popular messages the same as the ones with high

volume?

• Are the popular messages predicted from our method “legitimate messages”, or just

spam?

The chapter is organized as follows. In Section 4.2, we introduce the notion of popular

messages in Twitter. In Section 4.3, we explore a wide range of features that can be

utilized to tackle the questions mentioned above. In Section 4.4, we demonstrate the

effectiveness of our proposed method in multiple datasets. Related work is discussed in

4.6 and we conclude this chapter in Section 4.5.
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Table 4.1: Sample “retweet chain”.

how to: build your personal brand on youtube http://bit.ly/2uhunr

rt @mashable how to: build your personal brand on youtube http://bit.ly/3arqzh

rt @jimgaffigan: rt @mashable: how to: build your personal brand on
youtube http://bit.ly/3arqzh

4.2 Popular Messages in Twitter

We consider the problems of predicting two types of popular messages, “retweets” and

“URL sharing”. Both problems require an effective way to build datasets to be investi-

gated. Since our datasets are only a sample of actual Twitter messages, we cannot recover

all examples of two types of information flows. In other words, for “retweets”, we do not

always know which message is exactly a retweet of another message. For “URL sharing”,

we do not know how many URLs in the dataset appear in the complete set and therefore

cannot predict the popularity accurately. However, we argue that even if someone may

have the complete set of messages, it is still a question to recover exact patterns, especially

for “retweets”. For example, it is difficult to determine the origin of all retweets perfectly.

Due to the character limit of Twitter messages, many users may need to modify the orig-

inal message in a variety of ways to retweet a message. Therefore, a retweet may not

exactly match the original message. Moreover, some users may add some personal opin-

ions and feelings in retweets, which make the process of identifying the original message

more difficult. Here, we describe a simple method to construct a meaningful dataset for

“retweets” as follows, while a similar process is also applied to “URL sharing”. Note that

because we cannot obtain retweets by the newly developed Twitter API1 for the datasets

we experiment on. Conceptually, we want to build “retweet chains” as Figure 4.1.

First, we pre-process the datasets by removing links from the messages, removing any

word starting with the “@” character, removing messages containing non-latin characters

1http://dev.twitter.com/doc/get/statuses/retweets/:id
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and converting all characters to lower case. The term “RT” is temporarily removed from

messages and MD5 scores are calculated for the remaining strings. Two messages are

defined as “identical” if they share the same MD5 value. We sort all “identical” messages

in ascending time order, forming many chains of messages. The first message in the chain

is considered to be the original message, even if in reality this might not be the case, as

described above. We require that all later messages in the same chain should contain at

least one “RT” term, indicating that they are retweets, and discard all messages without

“RT” terms. Therefore, it does not matter if the first message in the chain is a retweet,

but all subsequent messages in the chain must be retweets. Table 4.1 demonstrates one

example of of “retweet chains” in our dataset where each line is a message while the

top one is considered to be the original message. For “URL sharing”, we do the same

preprocessing steps but leave the links in messages. We build URL chains (one for each

link) by grouping all the messages contain the same URL and sort them by ascending

time order. Note, we do not resolve all shortened URLs and we do not care that whether

a message contain “RT” or not in this case.

Using the “retweet chains” and “URL chains” built as above, four general questions

(with their abbreviation in the parentheses) are tackled in this chapter under a classifica-

tion framework regarding each message:

• Whether or not the message will be retweeted. (Q1)

• Whether or not the message will be retweeted with a certain volume. (Q2)

• Whether or not the URL in the current message will be shared in the future. (Q3)

• Whether or not the URL in the current message will be shared in the future with a

certain volume. (Q4)

By studying these problems, we wish to unveil some specific characteristics of popular

messages and how these messages can be differentiated from trivial messages. For Q1, if
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there are n messages in a particular chain, we take the first n − 1 messages as “positive

instances”, which means that they will be retweeted in the future at least once, and the

last one as a “negative instance”. In addition, all other messages which are not in any

chains are also considered as “negative instances”. For Q2, we set a certain threshold τ

and treat messages with the number of future retweets above τ as “positive instances”

and all other messages as “negative”. We will investigate the change in performance and

effectiveness of features as the threshold is varied. For Q3, the messages which contain

URLs that are shared in the future are considered to be “positive instances” while all other

messages as “negative”. Q4 is treated similarly as Q2 where we have a sliding threshold

for classification.

Note, we recognize some false positives in “retweet chains”. For example, although

many messages are exactly the same (e.g., “happy birthday”) and contain “RT” as well,

through some manual validation, we found that they are definitely not retweets with the

same origin. Since “retweet chains” are constructed artificially, we further validate all

messages by the connections between their authors. More specifically, we verify whether

there exists a connection between the authors of two consecutive messages in the chain. If

there is a follower-followee connection, we consider the later message to be a “real” retweet

of the previous one. Otherwise, we remove the later message. By filtering messages in the

chain in this way, we also construct smaller validation datasets, denoted as “constrained

datasets” and perform classification tasks on these datasets.

4.3 Features

In this section, we discuss a set of features that are applicable for questions Q1-Q4 in

detail. We group the features into content features, structural features, temporal features

and meta-data features, as shown in Table 4.2. There are at least two reasons for using
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Table 4.2: Features

Type Name Abbreviation

Content TF-IDF of terms in message TFIDF

Structural # of followers Indegree

Structural # of friends Outdegree

Structural # of followers of followers SecondLevel

Meta whether the message has been retweeted MsgRT

Meta # of the message have been retweeted MsgRTNum

Meta # of messages are retweeted by author UserRT

Meta whether the URL has been shared URLShare

Meta # of the URL have been shared URLShareNum

Meta # of URLs in the message URLNum

Meta # of hashtags in the message HashtagNum

Meta # of mentions (@) in the message MentionNum

Meta Tweets contain URLs per user URLTweetsUser

Meta hashtags per words HashtagsWords

Meta URLs per words URLsWords

Temporal the time elapse since the origin SinceOrigin

Temporal the time elapse since the previous SincePrevious

Temporal average time elapse of messages AverageBefore

Temporal average time elapse of a user’s messages AverageUser

the content of messages to predict their popularity. First, certain popular topics may

influence people to share and propagate information by retweeting. Second, by using the

content information we wish to model users’ interests and see whether they influence the

propagation of information. Here, we use Bag-of-Word (BOW) representation for the

terms in messages and calculate their TF-IDF scores. Alternative representations which

are more complicated may be considered, such as the sparse bi-gram model used in Lee

et al. [128] to detect Twitter spam and the topic model representation used in Hong et

al. [92]. Here, we use TF-IDF for simplicity.

Besides the content of messages, we also believe that the social relationships of a user

play a crucial role in the process of information propagation. Here, we denote the features

related to users’ social graphs as structural features. Three structural features are used in
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Figure 4.2: The distribution of retweets and URL sharing.

this paper: the number of followers and the number of friends one user has, and the number

of followers of followers one user has (essentially, the number of second level followers).

Due to the system design of Twitter, users mainly see the messages from their direct

friends. Therefore, messages written by a user with zero in-degree are highly unlikely

to be retweeted in the future. Moreover, a user with out-degree zero (no friends) has

limited information sources and thus may not be able to pass other popular or important

messages to her followers. So, we hypothesize that these structural features might play an

important role in determining popular messages. Some other features, like PageRank and

local clustering coefficient [19], which were not effective in our preliminary experiments,

are excluded in this work. Most Twitter messages are time sensitive, meaning that they

are valuable only during a short time period. For a particular message, users may either

eventually receive the message from different retweet paths if available or do not receive the

message due to its triviality. In other words, messages might be out of date very quickly,

especially the ones related to current events and news. Therefore, retweets may have a

strong relationship with temporal information. Several temporal features are considered

and all of these features are based on the chains constructed as described in the previous

section. Suppose we have K retweet chains in total. For each chain, we use tk,i to denote
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the time stamp of message i in the chain k where i ∈ {0, ..., n} and tk,c to denote the

time stamp of the current message. We also use t
(u)
k,c to denote the author of the current

message is user u and Nu as the number of times user u’s messages get retweeted.

• Since Origin: The time difference between the current message and the origin:

tk,c − tk,0

• Since Previous: The time difference of current message and the previous one:

tk,c − tk,c−1

• Average Before: The average time difference before current message in the same

chain:1c
∑c

i=1(tk,i − tk,i−1)

• Average Time Per User: For a particular user u, 1
Nu

∑K
k=0

∑c
i=0(t

(∗)
k,i+1 − t

(u)
k,i )

All these features may capture different types of aspects for retweets. More specifically,

the first two features measure the freshness of the message. If a message is relatively old,

other users may have already seen it and therefore the probability of it being retweeted is

likely to diminish. The third feature measures the basic propagation speed of the message.

Different types of messages have different propagation speeds. For instance, breaking news

may have faster speed of propagation than some messages related to a week-long conference

(e.g., WWW or SIGIR). The last feature regarding temporal information is related to the

author of the target message. If an author produces messages that usually get retweets in

a short time period, this would be an indicator that the messages generated by this user

will also be retweeted in the future. Note, these features can be also calculated for “URL

sharing” chains.

Meta information related to messages and authors can be very helpful. First, we

consider whether the message has been retweeted before. Although we are predicting the

possibility that this message will be retweeted in the future, the history of this message
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Table 4.3: Statistics about the datasets

W Dataset

Total messages: 269,466,135

Total “retweet” chains: 1,782,948

Total messages in all chains: 5,482,914

Stanford Dataset

Total messages: 472,126,381

Total “retweet” chains: 8,083,011

Total messages in all chains: 26,529,634

W Dataset (Constrained)

Total “retweet” chains: 262,612

Total messages in all chains: 1,174,127

Stanford Dataset (Constrained)

Total “retweet” chains: 1,778,262

Total messages in all chains: 10,081,260

KAIST Graph

Number of user’s connections: 1.47 billion

Number of distinct users: 41.7 million

may be a strong indicator of its future popularity. We also consider whether the messages

a user produces have ever been retweeted before as a feature. If a user usually generates

messages that are retweeted, the new messages by the same user might has higher chance

to be retweeted. Other meta features are straightforward that have been already used in

similar papers, such as the number of URLs in the message and the number of hashtags

in the message and other variants.

4.4 Experiments

Two datasets are used in our experiments. We collected the first using Twitter’s Stream-

ing APIs2, denoted as “W Dataset”, consisting of messages from November and Decem-

ber 2009. Another dataset, denoted as “Stanford Dataset”, is obtained from Yang and

2http://dev.twitter.com/
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Table 4.4: Performance on question Q1

W Dataset

Feature set Precision Recall F1

TFIDF 0.744 0.629 0.682

Non-content 0.896 0.850 0.872

TFIDF + Non-content 0.899 0.863 0.881

Stanford Dataset

Feature set Precision Recall F1

TFIDF 0.722 0.650 0.683

Non-content 0.859 0.879 0.869

TFIDF + Non-content 0.860 0.895 0.877

W Dataset (Constrained)

Feature set Precision Recall F1

TFIDF 0.522 0.097 0.164

Non-content 0.530 0.101 0.170

TFIDF + Non-content 0.643 0.157 0.252

Stanford Dataset (Constrained)

Feature set Precision Recall F1

TFIDF 0.542 0.113 0.187

Non-content 0.562 0.121 0.200

TFIDF + Non-content 0.668 0.189 0.295

Leskovec [213], consisting of messages from June, 2009 to December, 2009. For both

datasets, we remove all messages containing non-ASCII characters from the messages and

only keep the messages with at least five words, in addition to links and hashtags. For

connections between users, we use the graph from Kwak et al. [125]. More detailed statis-

tics are shown in Table 4.3. We plot the distributions of “retweets” and “URL sharing”

in log-log scale for both datasets in Figure 4.2. The X-axis is the tweets or URLs with

corresponding number of sharing or retweets. The Y-axis is the counts of such kind of

tweets. Note, all sub-figures suggest heavy-tailed distributions for “retweets” and “URL

sharing”. Taking “retweets” for instance, most tweets that are retweeted only attract one

retweet while a small number of tweets can receive a large number of retweets.

In our experiments, we need a classifier that can be trained and tested on millions
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of instances with millions of features. Plus, since the number of positive instances is

significantly smaller than the negative instances, a classifier that optimizes for accuracy

or error rate may not be appropriate for our task. We choose Logistic Regression as our

classifier, which is a linear classifier and can use arbitrary numerical values as features. The

implementation used is Logistic Regression with l2 regularization3. In order to overcome

the problem of unbalanced data, we sub-sample the negative instances down to the similar

size of positive ones for training but retain the complete data set for testing.

Since the Twitter data has strong temporal effects, classifiers may gain additional

advantages if cross-validation style evaluation is performed. Indeed, in preliminary cross-

validation experiments, only a TFIDF -based classifier may achieve very high F1 scores.

Thus, to be more realistic, we mimic the settings that might be used in real applications,

adopting a “semi-online” evaluation method. We train the classifier on one week or one

month data and test it on the next week or month. We do it iteratively for all the weeks

or months in our datasets. The features in a particular week or month are generated only

based on previous weeks or months. In this case, we do not give the classifier additional

hints of the “future”. More specifically, for “W Dataset”, we train and test the classifier

on weekly basis. For “Stanford Dataset”, we train and test the classifier on monthly basis.

Results are averaged across those weeks or months. Standard metrics including Precision,

Recall and F-measure are used in the experiments.

4.4.1 Predicting Popular Messages

For question Q1, whether or not a message will be retweeted in the future, the results are

shown in the upper part of Table 4.4. We conduct experiments on three different settings:

1) only based on TFIDF ; 2) only based on all non-content features (Structural + Meta +

Temporal); and, 3) combine TFIDF and all non-content features. The performances are

3http://www.csie.ntu.edu.tw/˜cjlin/liblinear/
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Table 4.5: Top ranked features by χ2 scores for Q1

W Dataset Stanford Dataset

Rank Feature Rank Feature

1 MsgRTNum 1 MsgRTNum

2 AverageBefore 2 MsgRT

3 SincePrevious 3 SinceOrigin

4 SinceOrigin 4 AverageBefore

5 MsgRT 5 SincePrevious

comparable on both datasets even though “W Dataset” is trained and tested on weekly

basis while the “Stanford Dataset” is trained and tested on monthly basis, suggesting

that the features are quite stable across the datasets and timeframes used for evaluation..

Although the best performance is achieved by combining all the features, it is clear that

a classifier only based on non-content features may be sufficient.

As mentioned in Section 4.2, the “retweet chains” we constructed are artificial chains.

Therefore, we further experiment on the “Constrained datasets” in which the users of two

consecutive messages in the chain are connected on the Twitter graph. The results are

shown in the bottom part of Table 4.4. Note, the overall performance drops dramatically as

expected since both datasets are a smaller, sparser sample of all tweets in Twitter and the

graph is also incomplete. We see that in this case, the combination of content features and

non-content features still performs well compared to only non-content features. Overall,

the results on original chains may effectively give an “upper bound” of the performance

on question Q1 while the results on strict chains give us “lower bounds”.

In addition to the classification performance, we calculate the correlation between

features and class labels by Chi-square tests (χ2 test) provided in WEKA [81] on all

non-content features since they are more interesting than single terms in the task. The

top five ranked features from both datasets are shown in Table 4.5. It is clear that

there is a consensus between two datasets on the top five features although the order of
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Figure 4.3: The performance of sliding threshold for question Q2.

ranking is not identical. Basically, whether a message has already been retweeted before

and several temporal features are strong indicators for the messages to be retweeted in

the future. For temporal features, it is not unexpected that they highly correlate with

positive instances since these features are empty for most negative instances which are

not in any “retweet chains”. For “retweet chains”, we conduct two-sample Kolmogorov-

Smirnov tests (KS test), a popular technique to detect whether feature values for different

instances are from the same underlying distribution (e.g., Becchetti et al. [19]). For these

three features, we gather the empirical distribution of feature values on positive instances

and negative instances, conducting the KS test on the two distributions. All the tests reject

the null hypothesis that the feature values for positive instances and those for negative

instances are from the same underlying distribution. For AverageBefore, the Kolmogorov-

Smirnov difference (KS difference) is 0.0265 and p-value for rejecting the null hypothesis
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Figure 4.4: Feature ranking changes of different thresholds.

equals to 1.4705· 10−282 . For SincePrevious, KS difference is 0.0544 while p-value equals

to 3.2203· 10−276 . For SinceOrigin, KS difference value equals to 0.0816 and p-value is

6.0070· 10−28 . In other words, a classifier built on these features can take advantage of

the fact that the empirical distribution of feature values among positive instances and

negative instances are from different underlying distributions.

In real-world applications, whether a message will be retweeted in the future may

not be so interesting since users are interested in popular messages, the ones repeated

numerous times by others. For this question, we use a slide threshold method to conduct

experiments on a series of binary classification tasks. We set the threshold τ , representing

the number of retweets a message will receive in the future. All the messages receiving

more than τ retweets are positive instances and all others are negative instances. We move

this threshold from 1 to 2, 000, which is a fairly large number in our datasets. The results
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on “W Dataset” (upper) and “Stanford Dataset” (lower) are shown in Figure 4.3 while

both figures contain two sub-figures. The standard deviation of F1 values are shown as

error bars in the figures. Three basic conclusions can be made through the results. First,

the performance (the overall F1 values) is worse than it was in Q1 in which the threshold

was effectively 1. As shown in Figure 4.2, there are large number of messages that only

receive low volume of retweets. Thus, a threshold larger than 5 (inclusive) may further

cause the datasets to be even more skewed, making the prediction problems harder for

the classifier. The second observation is that the combination of non-content features

and TFIDF perform more robustly than only using non-content features while this is not

obvious in Q1. Additionally, the standard deviation of F1 scores increases as the threshold

increases, indicating that performance varies from week to week (or month to month)

dramatically. The effectiveness of features is not stable over time. Since, in this work,

only simple temporal features are utilized, we hypothesize that features that consider the

trends of content and topics may help with this situation.

For feature ranking, we take the scores obtained by χ2 test and normalize them into

0 ∼ 1. Therefore, for all threshold values, the correlation between features and class

labels are compatible. We plot this proportional correlation for “W Dataset” (upper)

and “Stanford Dataset” (bottom) in Figure 4.4 over five different threshold choices. The

upper sub-figure shows the performance of non-content features while the bottom sub-

figure shows the performance of the combination of TFIDF and non-content features.

The first conclusion is that the proportional correlation between features and class labels

is drastically different for low volume retweets versus high volume retweets. For low volume

retweets, several features (e.g., MsgRT, AverageBefore, SinceOrigin, SincePrevious) are

approximately equally correlated to the class label and they are consistent on two datasets

while MsgRT dominates in later threshold values and some features tend to be more

correlated with class labels on either one dataset (e.g., AverageBefore for “W dataset”
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Table 4.6: Performance on question Q3

W Dataset

Feature set Precision Recall F1

TFIDF 0.808 0.747 0.776

Non-content 0.837 0.893 0.864

TFIDF + Non-content 0.886 0.868 0.877

Stanford Dataset

Feature set Precision Recall F1

TFIDF 0.788 0.753 0.770

Non-content 0.842 0.878 0.860

TFIDF + Non-content 0.888 0.880 0.884

Table 4.7: Top ranked features for question Q3

W Dataset Stanford Dataset

Rank Feature Rank Feature

1 URLShare 1 URLShare

2 URLAverageBefore 2 URLSinceOrigin

3 URLSinceOrigin 3 URLAverageBefore

4 URLSincePrevious 4 URLSincePrevious

5 URLsWords 5 URLsWords

and SinceOrigin for “Stanford dataset”). This may partially explain that the performance

for Q1 on two datasets are very similar but it is noticeably different on Q2, shown above

in Figure 4.3. Overall, it seems that temporal features are correlated to all threshold

values although the contribution of them may vary. Note, since we normalize the χ2

scores just for visualization purposes, the proportion for different thresholds are not really

comparable. A small proportion does not indicate that this feature has little contribution

in the classification performance. Similar to Q1, we also investigate the problem of whether

a URL in the current message will be shared in future or not, regardless of its volume.

The results are shown in Table 4.6. Again, the combination of non-content features and

TFIDF is better than using non-content features only, though the margin is small, as in Q1.

Using the same feature ranking techniques, we see that temporal features are significantly
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correlated to the class label. A URL that has been shared before (URLShare) will strongly

indicate that this URL may be shared in the future. The feature rankings are also similar

on the two datasets.

We also slide the threshold of the number of sharings a URL may receive in the

future to investigate how this classification-based method performs for larger volume URL

sharing. The results on “W Dataset” (upper) and “Stanford Dataset” (bottom) are shown

in Figure 4.5. Both figures contain two sub figures. The upper sub figure shows the

performance of non-content features while the bottom sub figure shows the performance

of the combination of TFIDF and non-content features. The standard deviation of F-

measure are shown as error bars in the figures. As in Q2, the performance drops for larger

volume but two datasets have more similar performance in this task than it was in Q2.

Overall, the combination of features achieve more robust and better performance on both

datasets.

Similar to Q2, we also conduct a feature ranking process to understand the changes

of correlations between features and labels. The results on “W Dataset” (upper) and

“Stanford Dataset” (lower) are shown in Figure 4.6. Unlike Q2, here the results are more

stable on both datasets. The temporal features for URLs play significant role as suggested.

Additionally, the meta feature URLShare, which essentially indicates that a URL has been

already shared, strongly correlated to class labels, especially for high volume of sharing

URLs.

4.4.2 Spam or Not

Although it would be nice to know that the popularity of messages can be predicted, it

is certainly better to know whether the information conveyed by these popular messages

is high quality or not. Here, rather than directly assessing the quality of messages, we

look at whether the author of a particular message is questionable, namely a spammer.
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Figure 4.5: The performance of sliding threshold for question Q4.

However, it is also a hard question to determine whether a user is a “spam user” due to

both the problem of definition and other practical issues (e.g., how to differentiate “spam

users” from “legitimate business promoters”). We use a simple method to determine the

legitimacy of a user by verifying the existence of the account one year later (in December

2010). Since some spam user accounts might be terminated by Twitter, according to its

rules4, we believe that it is at least reasonable to assume the content generated by these

users is suspicious.

Taking Q1 as an example, for the “W dataset”, we found that within a total of

12,380,678 users, 1,040,672 user’s accounts (8%) disappeared by December 2010. These

suspicious (possibly spammer) users generated 26,854,749 messages, out of which 431,224

are labelled as positive in the dataset (approximately 7.8% of all positive instances). In

4http://support.twitter.com/entries/18311-the-twitter-rules
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Figure 4.6: Feature ranking changes of different thresholds for question Q4.

order to determine the impact of messages from suspicious users, we conduct two simple

experiments. If we train on the complete dataset (including these questionable messages)

and test on non-suspicious messages, the overall F1 score is 0.8803. In addition, if we only

train the classifier on the remaining (non-suspicious) data but test on all messages, the

overall F1 score is 0.8801. Both scores are comparable to the one reported in Table 5,

suggesting that messages from possibly suspicious users were not affecting classification

performance. Similar performance is also achieved on the “Stanford Dataset”. However,

we do believe that a thorough study of such users and the messages generated by them,

as well as a more detailed performance analysis, would be valuable future work.
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4.5 Summary

In this chapter, we studied the problem of identifying popular messages from Twitter by

employing a classification approach with extensive experiments. Our experimental results

demonstrated that non-content features can be effectively used to predict popular messages

in general while integrated with content features would give more robust performance on

the problem of predicting high volume popular messages. We also conducted a feature

selection process on different levels of popularity of messages, showing that temporal

features are vital for both “retweets” and “URL sharing” problems.

In addition, we opened a discussion on how spam users potentially influence the prop-

agation of popular messages by investigating the “suspicious messages” produced by ques-

tionable users. The preliminary results showed that the current classifier can filter out

reasonable amount of these messages while a comprehensive study is required for the fu-

ture work. The features demonstrated in this chapter can be computationally inexpensive

in two senses. First, most features only require a single pass of current data stream and

statistics of feature values can be updated on the fly (e.g., MsgRT ). Secondly, all features

can be computed in parallel, and indeed are generated within Hadoop, an open source

MapReduce framework [58], in our experiments. Our “semi-online” evaluation settings

also suggest that the techniques introduced in this chapter would also be applicable to

real-world systems.

4.6 Bibliographic Notes

Twitter has attracted a lot of research attention in the past a few years. Here, we only

review the work that attempts to understand the factors influencing popular messages and

how messages are propagated on Twitter. One recent study conducted by Suh et al. [186]

demonstrates what kinds of factors contribute to number of retweets for a message. The
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authors conducted Principle Component Analysis (PCA) on a dataset consisting of 10K

messages with nine features and demonstrated how different features were related to latent

factors found by PCA and further studied the features on a larger dataset. Although it

is interesting to know how effective one feature might be, the authors do not perform

any prediction task on the dataset. In their study, they claimed that URLs and hashtags

highly correlate with the potential of messages to be retweeted. Similar work is performed

by Ye and Wu [217] who use some simple structural features to understand how messages

propagate in Twitter network. In a recent poster by Hong et al. [92], we presented some

of this material. In addition to retweet counts, however, we refine those ideas, adds a

second type of popular message, investigate the effect of a variable threshold rather than

an arbitrary set of retweet prediction counts, and comprehensively investigate a somewhat

different set of features.

In addition to these experimental approaches to the problem, Yang and Leskovec [213]

proposed an adaptive wavelet-based clustering method to characterize temporal variations

of social media and conducted their method on Twitter data. Although their work offers

some insights of information propagation, they do not address the prediction task. In

general, the set of features and the datasets considered in this chapter are much larger

than existing work.

One work relevant to our general research problem of building a personalized message

recommendation system is that of Chen et al. [46], which describes a combination of

methods for recommending popular URLs from Twitter messages. They select a set of

candidate URLs from the local graph of each user, then rank them by topic relevance

and social voting. For topic relevance they build profiles for each user and each URL

separately, modeling them as bag-of-words vectors. The similarity of users and links can

then be computed by calculating the cosine similarity between vectors. Furthermore, they

use the local graph as an indirect voting procedure, where the existence of the URL in
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a message constitutes a vote from the author of the message for that URL. The work of

Phelan et al. [160] also presents a system which can recommend URLs, but in this case

they are augmenting the output of an RSS reader with information from Twitter. Their

system, called Buzzer, ranks RSS stories based on the co-occurrence of popular terms

within the user’s feeds and Twitter messages. Similar work also includes Khabiri et al.

[112] where the authors try to predict the popularity of new messages in Digg, as measured

by up/down votes. In addition, Castillo et al. [38] try to predict the number of citations

of academic papers given the information on both authors and the citation network.
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Chapter 5

Personalized Information Filtering

in Twitter

5.1 Introduction

In the previous chapter, we discussed how popular information can be identified and pre-

dict in Twitter. Merely recommending popular messages to all users, regardless of personal

tastes, is not uncommon in online conversational media services. However, it is believed

that more personalized information filtering can help users find relevant information and

improve user experiences. This chapter and the following chapter dedicate to this idea.

In the current online social media ecosystem, users are able to connect and commu-

nicate with each other utilizing rich multimedia content, including text, images, video,

and audio. These communication streams allow users to be informed instantly of the lat-

est updates from their social connections. As a result, the aggregated social content has

become a powerful tool for monitoring critical information in various situations, such as

natural disasters and political upheavals.

Although services like Twitter and Facebook provide platforms for users to obtain fresh
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information, two issues prevent them from being sufficiently relevant, causing deterioration

of user experience and engagement. First of all, when facing a large amount of content from

their social connections, users simply cannot consume it in an effective and efficient way,

leading to the problem of information overload. On the other hand, information for a user

is usually limited in scope to the user’s social connections. Thus, it is difficult for a user

to obtain information distributed outside of their circle, even though it might match their

interests, leading to the problem of information shortage. Users may spend a significant

amount of time filtering and searching for relevant information in social media. From the

perspective of service providers, it is also very important to understand how users interact

with the systems through a variety of actions such as re-posting (retweets), replying and

commenting. It is also indispensable to track what in which users are interested, induced

from the content requested and generated by them. Therefore, social media services can

filter and recommend content to users based on their the history of previous interactions

and interests.

The task of understanding users’ behaviors and their interests has a number of chal-

lenges. First, although the number of items (updates, tweets, etc.) generated by users in

such services may be huge, few of them impact a particular user, making the interaction

data sparse. Second, new users and new content items flow into the system continuously.

Thus, the “cold start” problem tends to be severe in these social platforms, compared to

traditional information systems. In addition, a tremendous amount of content is rich yet

noisy. Simple information retrieval or topical modeling techniques may not be sufficient

to capture users’ interests.

The problem tackled in this chapter has strong links to research in recommender

systems and collaborative filtering. From the perspective of recommender systems, the

task can be cast as building a list of relevant content items to users based their social

connections and interests. Thus, many collaborative filtering techniques are applicable to
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the task. However, on the other hand, as we mentioned, social content systems are much

more dynamic than traditional recommender systems: many new items are pushed into

the system every second. Therefore, recommender systems need to be adapted to this

novel situation.

State-of-the-art collaborative filtering models are based on latent factor models (LFM),

partially due to their superior performance in the Netflix competition (e.g., Koren [121]).

However, the basic assumption for standard LFM is to exploit a user-item interaction matrix

and cannot handle arbitrary features easily. Although some of newly proposed frameworks

such as Agarwal and Chen [1] and Chen et al. [48], based on LFM, can consider features,

fundamental modeling assumptions prevent them from handling high-order interaction

data (e.g., tensors). In addition, current extensions to LFM such as Agarwal and Chen [2],

Shan and Banerjee [178] and Wang and Blei [195] which incorporate rich text information

are usually cumbersome, requiring complicated inference algorithms which cannot scale to

large datasets. Moreover, researchers in collaborative filtering are realizing that pointwise-

based measurement may no longer be appropriate and so a handful of ranking-based

metrics are proposed. However, no work to date has compared them systematically on

real world datasets.

In this chapter, we study the problem of modeling users’ behaviors by focusing on

one particular decisions, retweets, in Twitter and try to understand users’ interests. Our

method can be easily extended to model multiple types of users’ decisions as well. We use

a state-of-the-art recommendation model, Factorization Machines FM [165], to model user

decisions and user-generated content simultaneously. Our contributions can be summa-

rized as follows:

• We propose Co-Factorization Machines (CoFM), which deal with two (multiple) as-

pects of the dataset where each aspect is a separate FM. This type of model can

easily predict user decisions while modeling user interests through content at the
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same time.

• We apply Factorization Machines to text data with constraints. Thus, the resulting

method can mimic state-of-the-art topic models and yet benefit from the efficiency

of a simpler form of modeling.

• For user decision modeling, we compare a number of ranking-based loss functions.

We introduce the newly proposed WARP loss Usunier et al. [190], which has been

successfully applied in text and image retrieval tasks (e.g., Weston et al. [208] and

Weston et al. [209]), into the context of recommendation.

• We apply our proposed methods to the problem of modeling personal decision mak-

ing in Twitter and explore a wide range of features, revealing which types of features

contribute to the predictive modeling and how content features help with the pre-

diction.

We next review several directions of related work. In Section 5.2, we review FM: its

basic settings and learning procedure. In Section 5.3, we formalize CoFM with different

strategies of shared latent features. In Section 5.4, we compare and discuss a variety of

loss functions. In Section 5.5, we describe features used in our model. In Section 5.6, we

report the experiments with the discussions of datasets and baselines used. We conclude

the chapter in Section 5.7.

5.2 Modeling Twitter by Factorization Machines

In this section, we first review the basic settings of FM with a discussion of how it can

be used for different types of responses. Then, we detail how FM can fit into the task

of modeling Twitter data, which is a predictive modeling for user responses and a topic

coding model for content.
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5.2.1 Factorization Machines

Here we briefly review FM, a state-of-the-art framework for latent factor models with rich

features. For a detailed description, please refer to Rendle [165]. We start from a design

matrix X ∈ R
D×P , where the ith row xi ∈ R

P denotes one data instance with P real-

valued variables and where yi is a response for the data instance. We use si to represent

our estimation of yi based on xi. In many tasks, the goal is to make the discrepancy

between si and yi as small as possible. The factorization machine (FM) model of order

d = 2 for f(yi |xi,Θ) = si can be defined as:

si = β0 +
P∑

j=1

βjxj +
P∑

j=1

P∑

j′=j+1

xi,jxi,j′

K∑

k=1

θj,kθj′,k (5.1)

where k is the dimensionality of the factorization and the model parameters Θ = {β0,

β,θ} are: β0 ∈ R, β ∈ R
P and θ ∈ R

P×K. The form of FM (Equation 5.1) is very general

and can be used in many applications. In order to cope with different tasks, we can

define an exponential family distribution over P (yi | si) similar to that utilized in Lee et

al. [127], as P (yi | si) = h(yi,Φ) exp
[
η(λ; si)

TT (yi)−A
(
η(λ; si)

)]
where λ is the natural

parameter of the family. For instance:

• Gaussian response: For normal rating prediction problems, yi can be treated as a

real-valued response drawn from a Gaussian distribution. Thus, we scale si with a

known variance. η = si/σ
2, A = s2i /2σ

2 = σ2η2/2 and h = 1√
2πσ

exp(− 1
2σ2 y

2
i ) where

σ2 is the variance. Thus, the expectation E[T (y)] = s.

• Poisson response: For word counts, yi can be treated as the indicator of word

index, drawn from a Poisson distribution. Thus, η = si, A = exp(si) and h = 1
yi!

.

The expectation E[T (y)] = exp(s) = λ.

• Binary (Bernoulli) response: For binary decisions, yi is usually treated as 0 or
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1. Thus, η = si, A = log(1 + exp(si)). The expectation E[T (y)] = exp(s)
1+exp(s) .

One important aspect of FM is that the model can mimic the structure of many state-of-

the-art models like matrix factorization, pairwise interaction tensor factorization, SVD++

and neighborhood models in one unified framework, as demonstrated by Rendle [165].

FM can be learned in several ways, including maximum a posteriori (MAP) estimation

and Bayesian inference. In this chapter, we stick to MAP learning, which is to maximize

the log likelihood through stochastic gradient descent (SGD) or alternating least squares.

An equivalent view is to minimize a loss between the reconstructed response f(yi |xi,Θ)

and the true response yi as argminΘ
∑

i l(f(yi |xi,Θ), yi)+R(Θ) where l is a certain loss

function and R is a regularization term for Θ.

5.2.2 Modeling User Decisions and Content

We focus on extending FM to model Twitter data. We have two goals to achieve for

understanding and modeling user behaviors in Twitter. First, we wish to uncover what

kind of items with which users interact through various actions (e.g., retweets, replies and

favorites) and what features contribute to the mechanism that causes certain pieces of

information to be shared across social connections. Second, content is of great importance

in Twitter and thus it is vital to discover topics in which users are interested and how these

topics influence users’ decisions. As mentioned earlier, we wish to predict users’ decisions

as accurately as possible while discerning topics from the huge amount of user-generated

content at the same time.

For the first task, we focus on a binary response yd for each tweet d: whether the tweet

will be retweeted by a target user u(t). We use u(a) denote the author of the current tweet

d. For each tweet, we use xd to represent a list of explicit features for tweet d, which might

include features about u(t) and u(a), and θd to represent a list of latent features (factors)

discovered through modeling. For the purpose of discussion, we compose a simple feature
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vector consisting of one categorical feature to indicate its author and one categorical

feature to indicate the index of the tweet. Following the definition of FM (Equation 5.1),

we can have an estimation of yd based on xd and θd as f(sd |xd,θd):

sd = β0 + βu + βd+ < θu,θd > (5.2)

This is the exact form of traditional matrix factorization for collaborative filtering where

the θ are treated as latent factors for users and items (tweets). Since yd is a binary

response, we can also have a binary version as yd ∼ Bernoulli
(
δ(sd)

)
where δ is the

sigmoid function. For user decisions y, one natural criteria for a reasonable model is to

predict them as accurately as possible by specifying some error based loss functions (e.g.,

squared error loss). Alternatively, we can provide a ranked list of items for each user

and measure how well these ranked lists approximate user actions. The latter view goes

beyond pointwise evaluation and learning process for recommendation systems and has

been studied extensively recently (e.g., Koren [121] and Yang et al. [214]). Later, we will

further explore this idea.

For the second task, we will model terms in each tweet d. We denote sdv to represent

our estimation of the raw word count of term v in tweet d, wdv, which is the response in

this task. The vector xdi is used to represent features of term i in tweet d. In order to

explain things more clearly, we change β for sdv to α and latent factors to φ. We use two

simple indicator features here. More specifically, for each sdv, we associate one categorical

feature to indicate the term index and another one to indicate the tweet index. Following

a similar argument, sdv is a function of all features f(sdv |xdv ,φdv):

sdv = α0 +αd +αv+ < φv,φd > (5.3)

The inner product between φv and φd is of interest. For φd, it is a K-dimensional vector

97



www.manaraa.com

and it can be treated as code for tweet d, playing a similar role as P (z | θ) in traditional

topic models like probabilistic latent semantic analysis (PLSA) or latent Dirichlet allocation

(LDA). The only difference is that φd is not constrained to rest on the simplex. For φv, it

is a K-dimensional vector for term v and it can be treated as a P (z | v). Using φv for all

terms, we construct the following matrix:

M ∈ R
K×V where M·,v = φv

where each column of M is set to φv. Therefore, each row of M can be treated as P (v | z)

without normalization. In order to recover a similar modeling power from topic models,

we add the following constraints to the parameters:

∑

v

φkv = 1 for all k,φkv ≥ 0 ; and,φdk ≥ 0 ;

Thus, we have a normalized matrix M, resembling a conventional topic matrix. We can

further restrict all α to be non-negative, resulting in a non-negative decomposition of the

term matrix. In such a setting, the content modeling behaves like a simpler topic model

than its more complicated counterparts. If we view the terms in a tweet as count data,

we can use the Poisson distribution and thus have wdi ∼ Poisson
(
exp(sdi)

)
. On the

other hand, since terms are sparse in tweets where one term will most likely appear only

once in a single tweet, an alternative parametrization is to use the Bernoulli distribution

wdi ∼ Bernoulli
(
δ(sdi)

)
. Note that other explicit features, which are not discussed here,

can be incorporated into the model easily.

Thus, we can have use FM to model two tasks separately. However, it might be better

if we can jointly model these two aspects of the data together. In this chapter, we propose

several methods to simultaneously perform these two tasks.
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5.3 Co-Factorization Machines

In many application scenarios, we may have multiple views. For instance, each tweet is

associated with two types of important aspects to be modeled: 1) user action responses and

2) terms. In this subsection, we introduce Co-Factorization Machines (CoFM) to address the

problem of modeling multiple aspects of data. Following the setting described in Equation

5.2 and Equation 5.3, we have two separate FMs to model two aspects of the same tweet

where the two aspects are not linked together. Notice that we have learned two different

latent representations of the same tweet: θd and φd. Linking two factorization machines

might be possible if these two latent representations of the tweet can be coupled in certain

ways. Indeed, there exist several design choices to combine these two modeling processes.

We present three paradigms below.

5.3.1 CoFM through shared features

One natural approach to link two latent representations of the same tweet is to treat one

type of latent representation as a set of features and feed it into another modeling process.

More specifically, we plug φd into Equation 5.2 and have:

sd = β0 + βu + βd+ < βφd
,φd > + < θu,θd >

+
K∑

k=1

φd,k < θu,θφd,k
> +

K∑

k=1

φd,k < θd,θφd,k
> (5.4)

Here, the third term < βφd
,φd > is a simple regression part by using latent factors

obtained from content. The last two terms are of interest. Each latent factor in φd

is re-weighted by the interaction between its projection to the latent space of θ and
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corresponding user/tweet latent factors. In other words, the last two terms can be re-

written as:

K∑

k=1

φd,k < θu,θφd,k
> +

K∑

k=1

φd,k < θd,θφd,k
>=

< φd,ωu,φ > + < φdi,ωd,φ >

where ω are weights that each element is obtained from the interaction between the latent

factors θ and linear mapping vector θφ. This kind of mapping is similar in spirit that used

by Gantner et al. [74]. The same process can be used for wi,v as well. If the shared feature

mechanism is indeed a feature re-weighting scheme, another re-weighting approach might

also be possible. Instead of using θφ to map each dimension in φ to θ, we treat φ as the

latent representation of a missing feature ωφ. The corresponding equation is:

sd = β0 + βu + βd + βωφ
ωφ,d+ < θu,θd >

+ ωφ < θu,φd > +ωφ < θd,φd > (5.5)

Under this formalism, ωφ is a missing feature and can be treated as weights for interactions

between θ and φ. Comparing Equation 5.5 and Equation 5.4, we can see that the second

formalism has fewer parameters to be estimated and more intuitive motivations. In this

chapter, we use the second formalism.

5.3.2 CoFM through shared latent space

The methods introduced in the previous section assume that the latent representations

obtained by different aspects of the model are different. A simpler approach is to assume

that the latent factor of θd is exactly the same as φd. Therefore, some parts of the latent

factors of the same tweet are shared across different aspects. If we use η to indicate the
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shared latent factors, the two aspects under this formalism are as follows:

sd = β0 + βu + βd+ < θu,ηd >

sd,v = α0 +αd +αv+ < φv,ηd > (5.6)

This formalism shares the idea of matrix co-factorization used in relational learning sce-

narios.

This approach would be convenient when multiple factors will be shared. For instance,

for each term, we can add one more categorical feature to indicate the author of the tweet

and therefore obtain a latent representation of its author through content modeling:

sd = β0 + βu + βd+ < ηu,ηd >

sd,v = α0 +αd +αv +αu+ < φv,ηd > + < φv,ηu >

+ < ηu,ηd >

where the factors for user u and tweet d are shared in two aspects.

5.3.3 CoFM via latent space regularization

The discussions in Sections 5.3.1 and 5.3.2 represent two variations of how to work with

two latent representations of the tweet. One can regularize two such representations such

that they do not reside too far away from each other. A simple approach is to impose the

following regularization on the model:

λφ,θ||φd − θd||2F

where λφ,θ is a regularization parameter. Under this assumption, we can also view that

one latent factor is drawn from the multivariate normal distribution with the mean as
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another latent factor:

φd ∼ MVN(θd, λ
−1
φ,θI)

This will recover the formalism from Wang and Blei [195]. An additional possibility is

suggested in Agarwal and Chen [3] where a “global” representation is assumed. The

“local” representation is drawn from the “global” representation by a multivariate normal

distribution. Thus, a third latent representation will be introduced if this approach is

used.

5.4 Learning with CoFM

In this section we formalize the FM learning problem in an optimization framework. The

discrepancy between the estimation si by FM/CoFM and the true value yi can be measured

by loss functions. Different choices of loss functions may lead to significant changes in

performance as we will see in the experiments. Traditionally, pointwise error-based loss

functions are widely used in latent factor models, which are widely used in recommender

systems. Here, we discuss how different loss functions fit into the FM/CoFM framework and

how the overall learning algorithm proceeds.
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5.4.1 Optimization with content

For the task of modeling content in Twitter, two possible loss functions come from two

assumptions (Poisson or Bernoulli distributions). We have the following optimization task:

Opt(C) = argmin
Φ,α

D∑

d=1

V∑

v=1

lC(wdv , f(sdv |xdv,α,Φ))

+

P1∑

j=1

λα,jα
2
j +

P1∑

j=1

λφ,j||φj ||2F

s.t.:α ≥ 0, φkv ≥ 0,∀k, v; φk ∈ P,∀k ∈ K; φdk ≥ 0,∀d, k (5.7)

where P1 is the number of features used for each term v in each tweet d and P is a

(K − 1)-simplex. We consider the following loss functions for this task:

• Log Poisson loss: lLP (wdv , sdv) = −wdv log sdv+sdv. Minimizing this loss is actually

equivalent to minimizing an unnormalized KL-divergence between observed counts

wdv and their reconstructions sdv.

• Logistic loss: lLG(wdv, sdv) = log[1 + exp(−wdvsdv)]. Minimizing this loss is essen-

tially performing logistic regression. Here, we only consider on/off of a term v in

tweet d, dismissing its possible multiple occurrences.

The optimization problem in Equation 5.7 can be efficiently solved according to two facts:

1) Due to the property of multilinearilty [165], the model is linear with respect to each

model parameter when others are fixed and, 2) Proposition 1 in Zhu and Xing [230]

states that the optimal value of a single parameter when other are fixed is the maximum

between zero and the value obtained by a non-constrained version of the same problem.

Also, efficient methods (e.g., Duchi et al. [64]) exist to project real-valued vectors onto the

simplex. Therefore, this optimization problem is solvable.
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5.4.2 Optimization with user decisions

For modeling user decisions, we also formalize the problem as an optimization problem as

follows:

Opt(U) = argmin
Θ,β

D∑

d=1

lU (yd, f(sd |xd,β,Θ))

+

P2∑

j=1

λβ,jβ
2
j +

P2∑

j=1

λθ,j||θj ||2F (5.8)

where P2 is the number of features used for each tweet d. Unlike content modeling, no

constraints are put onto the parameter space. For pointwise loss functions, we consider:

• Squared error loss: lS(yd, sd) = (yd − sd)
2, which is for regression problems with

Gaussian responses.

• Logistic loss: lLG, the same as the loss used in modeling content.

• Huber loss:

lH(yd, sd) =





1
2 max(0, 1 − ydsd)

2 if ydsd > 0

1
2 − ydsd otherwise

This is the one-sided variant of Huber’s robust loss function. It is convex and

continuously differentiable. The loss is mentioned in Yang et al. [213].

It has been demonstrated that pointwise loss functions may not be appropriate for

recommender tasks when users choose items from a list of items prepared by the system

[56]. In such cases, we wish to adopt more advanced loss functions which consider pairwise

preferences. For each target user u, we can construct a set of tweets which are originated

by other users and retweeted by u, denoted as C+
u . Note that these tweets could be

originated by u’s friends or any other users who are not connected to u. On the contrary,

we denote all other tweets from u’s friends which are not retweeted by u as C−
u . Therefore,
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for each user u, there exists a huge set of tweets which are outside of u’s network and are

treated as unknown and not considered in the following loss functions. In this work, we

focus on pairwise loss functions:

Margin ranking criterion (MRC):

lM (x1, x2) =
∑

x1∈C+
u

∑

x2∈C−

u

max[0, 1− f(x1) + f(x2)]

which considers all pairs of positive and negative labels, and assigns each a cost if the

negative label is larger or within a “margin” of 1 from the positive label. Optimizing this

loss is similar to optimizing the area under the curve of the receiver operating characteristic

curve. That is, all pairwise violations are considered equally if they have the same margin

violation, independent of their position in the list. For this reason the margin ranking

loss might not optimize precision at k very accurately. This loss function is proposed in

Herbrich et al. [84] and used in many IR tasks (e.g., [109, 16]).

Bayesian personalized ranking (BPR):

lB(x1, x2) =
∑

x1∈C+
u

∑

x2∈C−

u

− log[δ(f(x1)− f(x2))]

where δ is a sigmoid function. This loss is proposed in Rendle et al. [167] and has been

used in tag recommendation (e.g., [168]) and yielded superior performance. This can be

viewed as a smooth version of MRC.

Weighted Approximately Ranked Pairwise loss (WARP): This loss, proposed in

Usunier et al. [190], has been successfully applied in image retrieval tasks [208] and IR

tasks [209]. Here, we discuss its application in recommender systems. The idea of WARP

is to focus more on the top of the ranked list where the top k positions are those we

care about, comparing to MRC and BPR where no notion of ranked list is introduced. By
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using the precision at k measure, one can weigh the pairwise violations depending on their

position in the ranked list. WARP is defined as an error function as follows:

errWARP =
∑

xi∈C+
u

L[rank(f(xi))] (5.9)

where rank(f(xi)) is the rank of a positive labeled instance xi ∈ C+
u given by

rank(f(xi)) =
∑

x′∈C−

u
I[f(x′) ≥ f(xi)] where I(x) is the indicator function, and L(·)

transforms this rank into a loss: L(r) =
∑r

j=1 τj,with τ1 ≥ τ2 ≥ · · · ≥ 0. The idea of

the rank function is to compute the violations where negative instances are ranked higher

than the positive ones and the L function is to transform violations into a loss. Different

choices of τ define different importance of the relative position of the positive examples in

the ranked list. In particular:

• For τi = 1 for all i we have the same AUC optimization as margin ranking criterion.

• For τ1 = 1 and τi>1 = 0 the precision at 1 is optimized.

• For τi≤k = 1 and τi>k = 0 the precision at k is optimized.

• For τi = 1/i a smooth weighting over positions is given, where most weight is given

to the top position, with rapidly decaying weight for lower positions. This is useful

when one wants to optimize precision at k for a variety of different values of k at

once.

In this chapter, we use τi = 1/i. It is difficult to directly optimize WARP due to the

discrete nature of indicator functions. In addition, since the number of negative instances is

significantly larger than positive instances, the rank function is inefficient to be calculated.

Before we tackle these issues, the form of Equation 5.9 can be readily re-written as (see
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[208] for details):

errWARP =
∑

xi∈C+
u

L[rank(f(xi))]
∑

x′∈C−

u
I[f(x′) ≥ f(xi)]

rank(f(xi))

with the convention 0/0 = 0 when the correct label y is top-ranked. We replace the

indicator function by using the margin function max(0, 1 − f(xi) + f(x′)). In order to

approximate the rank function, for a given positive instance, one draws negative instances

until the one which violates the indicator function. Thus, we approximate rank(f(xi)) by

using
⌊
D−−1

N

⌋
where ⌊·⌋ is the floor function, D− is the number of items in C−

u and N is

the number of trials of sampling until a violating pair is found. The approximation only

requires local knowledge of negative instances, making it easily to be calculated per user

for our case.

Competitive softmax loss (SOFTMAX):

P (yi = 1 | Cu) =
exp(f(si |xi))∑
xi
exp(f(si |xi))

for all xi ∈ Cu (5.10)

This loss is introduced by Yang et al. [214] and is motivated by the idea that users are

presented a list of items and they choose items based on the “utility” they will receive if

the item is chosen. Here, we assume that the utility for item i consists of two components

si + ei where si encodes the intrinsic interest of the item to the target user and ei is a

stochastic error term reflecting the uncertainty and complexity of the choice process. We

choose si to be the outcome from the predictive model (e.g., FM, CoFM). If the error term

ei is independently and identically distributed as a Weibull distribution, the probability

item i is chosen is exactly as Equation 5.10, which is essentially a multinomial logic model.

Competitive hinge loss (HINGE): Following a similar assumption that a user chooses

items based on their utilities, we can formalize the problem of distinguishing positive
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instances from negative ones as a problem of classification. Therefore, the key idea of

HINGE loss is that the utility difference between a positive item and negative items would

be greater than random errors, namely:

I(yi == 1)f(si |xi) >
1

|C−
u |

∑

xi∈C−

u

I(yi == 0)f(si |xi)

With this spirit, a pairwise preference learning problem can be formalized as follows:

lH = min

|C+
u |∑

t=1

ξt

s.t.: f(st |xt)−
1

|C−
u |

∑

xi∈C−

u

f(si |xi) ≥ 1− ξt and ξt ≥ 0,

∀xt ∈ C+
u

where ξ are introduced parameters to be optimized. This loss reflects the insight that

user decisions are usually made by comparing alternatives and considering the differences

in potential utilities. In other words, the marginal utility between user choice and the

average of non-choices is maximized. This loss is also introduced in Yang et al. [214].

All of these ranking-based loss functions were proposed in different contexts and never

compared in recommender systems. From the discussion above, it is clear that WARP is the

only loss function considering the relative positions between positive instances. Meanwhile,

both SOFTMAX and HINGE consider the set of positive and negative instances as a whole,

rather than MRC and BPR only deal with pairwise preferences. In addition to what has

been discussed here, other ranking based loss measures are also proposed. For instance,

Koren and Sill proposed the OrdRec approach [122], which is based on a pointwise ordinal

model. The idea of OrdRec is to predict a full probability distribution of the expected

item ratings, rather than only a single score for an item. However, this is not desirable in
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Algorithm 1: The sketch of the algorithm to optimize Equation 5.11. This is one
iteration over the whole dataset.

for u = 1 to |U | do
Optimize Opt(U) for θd, θu and β:

Perform stochastic gradient descent for pointwise loss functions or
rank-based loss functions.

Optimize Opt(C) for φd and α:
Perform stochastic gradient descent for log-Poisson loss or logistic loss

Optimize Opt(C) for M
Perform gradient descent to obtain the current optimal value for the topic
matrix

our setting in that we only care about relevant items ranked at the top. Thus, it is not

necessary (and even impossible in practice) to predict a full distribution over all positions.

Other researchers have tried to optimize NDCG directly. However, this is either done by

approximation [205] or by a two-stage approach [17], which might be sub-optimal.

5.4.3 Summary

Putting things together, a CoFM framework for learning a model for user decisions and

content understanding can be formalized as:

Opt(CoFM) : Opt(U) + πOpt(C) (5.11)

where π is a parameter to balance two objective functions. By choosing different coupling

strategies introduced in Section 5.3 and different loss functions, Opt(CoFM) can effectively

perform predictive modeling and maximum likelihood estimation of content at the same

time. We adopt a hybrid of SGD and coordinate descent to optimize Equation 5.11,

which is sketched in Algorithm 1. We iterate the whole dataset by performing SGD

for predictive modeling and content modeling while fixing the topic matrix. After one

iteration, we optimize the topic matrix by gradient descent. Since we restrict M ∈ P, an
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efficient method [64] can achieve this task.

5.5 Features

Here we discuss the features used in our models. These features utilize the content of tweets

that users have generated. All of these features try to capture users’ interests. Features are

divided into five groups: 1) categorical features, 2) content profiles, 3) relevance scores, 4)

latent topic model features, and 5) content meta features, where each group has multiple

features.

Categorical Features: The key idea of FM/CoFM is to use both indicator features

and explicit features together to obtain competitive performance in predictive tasks. For

modeling user decisions, we use three categorical features: 1) target user id, 2) neighbor

user id and 3) the tweet id. For content modeling, we use the term id and the tweet id as

features.

Content Features: For “content profiles” we utilize features to characterize what

users have posted and what their friends have posted. For each tweet i, let wi be the term

vector for this tweet. Let u(i) be the author of the tweet i. For user u, we construct three

user profiles as follows:

• Content Profile: Let CP(u) =
∑D

i=1 I[u(i) == u]wi. This is essentially the con-

catenation of all term vectors generated by user u.

• Neighborhood Profile: Let NP(u) =
∑

u′∈N(u) C(u′) where N(u) is a set of friend

users of user u.

• Retweet Profile: Let RP(u) =
∑D

i=1 I[u(i) == u ∧ r(i) == 1]wi where r(i) is a

binary indicator for whether tweet i is a retweet or not.
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These profile features will capture the interests of users at a fine-grained level. One

drawback of these features is that they capture the long-term interests of users. For new

tweets, they remain the same and would be less discriminative. Thus, we introduce the

second group of features, characterizing how relevant a new tweet is against user profiles.

Let R(w1,w2) be a relevance measurement between term vector w1 and w2. Thus, we

have the following relevance scores:

• Content Relevance: R(wi,CP(u)), measuring the similarity of the incoming tweet

to the user’s content profile.

• Neighborhood Relevance: R(wi,NP(u)), measuring the similarity of the incom-

ing tweet to the user’s neighborhood profile.

• Retweet Relevance: R(wi,RP(u)), measuring the similarity of the incoming tweet

to the user’s retweet profile.

We use dot product as the relevance measure although many other IR relevance scores

could also apply. Both “content profiles” and “relevance scores” utilize term level infor-

mation to determine the features. In addition to these features directly related to the

content generated by the users, other meta information also might be useful:

• Length of Tweet: Number of characters used in tweet i.

• Hash Tag Count: Number of hash tags used in tweet i.

• Hash Tag History: How many times the hash tag appears in u(i)’s retweets.

• URL Count: The number of URLs used in tweet i.

• URL Domain History: How many times the URL domain appears in u(i)’s

retweets.
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• Retweet Count: The number of times tweet i has been retweeted so far.

Local Graph & User Features: These features potentially characterize how popular

and how well connected a user is. Intuitively, a popular user who has many friends and

followers can be actively passing information by retweeting messages.

• Mention Count: The number of times user u is mentioned in other tweets.

• Friend Count: The number of friends user u follows.

• Follower Count: The number of followers user u has.

• Status Count: The number of tweets user u has published.

• Account Age: Number of years user u appeared on Twitter.

User Relationship Features: Relation features refer to those features which repre-

sent the relationship between a target user ui and his/her friend uj .

• Co-Friends Score: This feature estimates the similarity of friend sets of the target

user ui and his/her friend uj .

• Co-Follow Score: This feature estimates the similarity of follower sets of the target

user ui and his/her friend uj .

• Mention Score: The number of times ui mentions uj.

• Retweet Score: The number of times ui retweets uj .

• Mutual Friend: Whether ui and uj are mutual friends.

The similarity measure used is the Jaccard coefficient.

Temporal Features: We estimate user u’s activity level at time t as hu(t), which is

calculated by the average number of tweets he/she published in a periodical time slot, e.g.,

112



www.manaraa.com

1 10 100 1,000 10,000
10

0

10
2

10
4

10
6

10
8

# of retweets per user

# 
of

 u
se

rs

Figure 5.1: The sparsity of retweets per user.

every Monday. With the estimated response time ∆t, the number of accumulated tweets

can be written as: ru(∆t) =
∑

j∈F (u)

∫ tw+∆t
tw hj(t) dt, as proposed by Peng et al. [157]. We

calculate both activities using period of a day and a week.

In our case, all features are pre-calculated through a Hadoop cluster and can be pro-

cessed efficiently.

5.6 Experiments

To prepare our dataset, we first monitored the Twitter public stream for one month in

June 2012 and extracted users who post at least ten tweets including at least one retweet

during this time period, resulting in 765,386 target users with approximately 11M tweets.

For all these target users, we 1) crawled all their historical posts and 2) traced who they

retweeted from and crawled all their posts as well. In this fashion, we obtained 4,327,816

neighbor users with 27M tweets, resulting in a dataset that is significantly larger than any

previous work for similar tasks. For each target user u, we treat all tweets from his/her

neighbor users as incoming tweets. If a tweet d from incoming tweets are retweeted by user

u, d is treated as a positive instance, and negative otherwise. We plot the unnormalized

distribution of number of retweets per user in Figure 5.1, demonstrating that a great
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number of users only retweet a limited number of times while some users retweet thousands

of times.

We adopt rank-based metrics to evaluate the effectiveness of different mod-

els. We borrow Mean Average Precision (MAP) from the IR community. We de-

fine “precision” at position k (Precision@k) of all incoming items for a particu-

lar user as (# of retweets in top positions)/k. Then an average measure across all

top m positions (Average Precision) for user u is defined as (
∑m

k=1 Precision@k ×

lk)/(# of retweets for ranked list of user u) where lk is a binary indicator whether the

position k has been retweeted or not and m is the total number of positions evaluated.

Note that Average Precision is evaluated per user. We can average it across all users,

resulting in the MAP measure, as used similarly in [47, 91].

In order to mimic a realistic evaluation environment, we adopt a time-based evaluation

process, significantly differing from Chen et al. [47] where a fixed ratio of training vs.

testing dataset is used. (It is not clear whether the ratio is kept according to the time

order.) In addition, we do not use cross validation as it violates the time order of data,

yielding unfair advantages to certain models. Here, for each user, we split all incoming

tweets into n consecutive time periods with equal number of tweets in each time period.

We train models on one time period and test them on the next. This is a balance between

cross validation and online training and testing. In our experiments, we set n = 5.

We compare several aspects of proposed methods and other state-of-the-art baselines:

• Matrix factorization (MF): Categorical features, the target user id and the tweet

id are used to feed into FM, yielding a MF model with biases, which is a solid baseline

in many collaborative filtering tasks.

• Matrix factorization with attributes (MFA): In addition to the categorical fea-

tures used in MF, we add explicit features into the model, which essentially mimic
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Figure 5.2: The comparison of pointwise loss functions.

the state-of-the-art latent factor models with features [1, 213, 45] as mentioned by

Rendle [165].

• Collaborative personalized tweet recommendation (CPTR): This is the model

proposed in [47], which is a variation of MFA where the item factors for a tweet are

decomposed into term factors and neighboring user factors. This is a state-of-the-art

method for the task. We re-implement their approach under the framework of FM.

• Factorization machines with attributes (FMA): In contrast to two categorical

features, we add one more categorical feature, the neighbor user id, into the model,

resulting in a pairwise tensor factorization model with “target user-item-neighbor

user” interactions.

• CoFM with shared features (CoFM-SF): This is the model introduced in Section

5.3.1 with the same indicator features as FMA for user decisions. We use term id and

tweet id as two categorical features for content modeling. The latent factors for the

tweet are shared through the tweet id. Thus, we have a pairwise tensor interaction

model for user decisions and a topic coding model for content.

• CoFM with shared latent spaces (CoFM-SL): This is the model introduced in

Section 5.3.2. The feature setting is the same as CoFM-SF.
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Figure 5.3: The comparison of ranking-based loss functions.

• CoFM with latent space regularizations (CoFM-REG): This is the model introduced

in Section 5.3.3. The feature setting is the same as CoFM-SF.

For the sake of simplicity, we fix all regularization parameters to 1 and tune π, the balance

parameter of predictive modeling and content modeling in Equation 5.11. We report the

performance of π = 0.3, which is the best in our experiments. We also tune K, the

dimensionality of latent factors in FM/CoFM, from 10 to 250. We report the performance

of K = 150, which is the best in the experiments. For CPTR, we fix K = 200, which

is used in [47]. For content modeling, we do not observe significant differences between

using log-Poisson loss and logistic loss. Thus, for generality, we report the results based

on log-Poisson loss.

Predictive Results: We compare the predictive power of different models. First, we

demonstrate how loss functions affect performance, starting from pointwise loss functions.

For MF, MFA and FMA, we compare using three pointwise loss functions: squared error loss,

logistic loss and Huber loss. For CoFM-SF, CoFM-SL and CoFM-REG, we use the same three

loss functions for predictive modeling while fixing log-Poisson loss for content modeling.

Since CPTR is fixed to pairwise learning, we exclude it from the experiment. The result

is shown in Figure 5.2. The first observation is that the performance of MF which only

uses user-item interactions is significantly worse than the ones utilizing explicit features.
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The second observation is that logistic loss and Huber loss is consistently better than

squared error loss. This might be due to the reason that we only have binary responses

(retweets), similar to what is reported in Yang et al. [213]. The third observation is

that CoFM-SL and CoFM-REG are noticeably better than all other methods. This validates

our discussion in Section 5.3 that these two paradigms can be viewed as variants of many

successful co-factorization models where the predictive aspect can benefit from the content

modeling aspect. On the other hand, CoFM-SF performs poorly and even cannot match

the performance of FMA. We conjecture that this is because the data is too sparse such that

additional parameters induced by CoFM-SF cannot be effectively learned. We also observe

that FMA performs better than MFA, indicating that ternary interactions “target user-item-

neighbor user” can indeed capture the dynamics between users on Twitter, compared to

“target user-item” binary interactions.

In addition to pointwise loss functions, we also compare performance of different models

with ranking-based loss functions, as shown in Figure 5.3. The green line in the bar chart

is the performance of CPTR since it is trained with BPR. Comparing the results to pointwise

loss functions, the overall performance is significant higher, indicating that ranking-based

loss functions are indeed better for the task. Also, the discrepancy between different

models becomes larger, compared to pointwise loss functions. For instance, FMA, CoFM-SL

and CoFM-REG are much better than the others, where all three are above CPTR significantly.

In addition, CoFM-SL and CoFM-REG are consistently 3% − 4% better (depending on the

specific ranking-based loss function) than FMA in absolute MAP scores across 5 split of

data. Overall, WARP achieves competitive performance consistently for all models.

Content Modeling: We explore how topics are learned through the modeling. From

the formalism in Section 5.4.1, the matrix M can be interpreted as a topic matrix as in

standard PLSA/LDA. Thus, we can describe topics as in other topic models by ranking

terms in probabilities. This is superior to CPTR [47] where term factors are not in the
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Table 5.1: Examples of topics produced by CoFM.

Entertainment

album music lady artist video listen itunes apple produced
movies #bieber bieber new songs

Finance

percent billion bank financial debt banks euro crisis rates
greece bailout spain economy

Politics

party election budget tax president million obama money
pay bill federal increase cuts
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Figure 5.4: The impact of different groups of features.

simplex. We show some example topics in Table 5.1. The terms are top ranked terms in

each topic and the topic names shown in bold are given by the authors. We can see that

these topics are easily recognized and have the benefit of normal topic models while we do

not have cumbersome Bayesian style formalism and expensive inference algorithms in the

model. Note, however, that content modeling is not only for explanatory analysis—it is

indeed helpful for prediction tasks. From Figures 5.2 and 5.3, we can see that CoFM which

utilizes content modeling has better performance in general, and especially for CoFM-SL

and CoFM-REG which can outperform state-of-the-art methods significantly.

Feature Analysis: We study how different types of features contribute to the pre-

dictive power of the model. Instead of using methods like χ2 to calculate the correlation

118



www.manaraa.com

between feature values with respect to classification labels, we adopt the following two

straightforward methods. First, we start from a base model CoFM-SL using WARP without

any explicit features, which is the best model from previous experiments, and then add one

group of features consecutively. This method, denoted as “add on”, shows the contribu-

tion of each group of features as it is added into the model. The second method, denoted

as “take out”, starts with a complete model and removes one group of features to see

how performance drops accordingly. The results for “add on” and “take out” are shown in

Figure 5.4. The effect of “add on” is shown on the left and the effect of “take out” is on the

right. For both figures, “A”, “B”, “C”, “G”, “U” and “T” stand for “All”, “Base model”,

“Content feature”, “Graph feature”, “User feature” and “Temporal feature” respectively.

For “add on”, it is clear that each group of features contributes to the final performance

of the model and “Temporal” features have the least marginal gain. The most gains come

from “Content” features and “Local Graph” features. This observation is consistent with

[92]. For “take out”, the red square in each bar in the figure represents the performance

deduction for the corresponding feature group. Again, “Temporal” features have the least

impact on performance while removal of “Local Graph” features hurts performance much

more than that of “Content” features. From both “add on” and “take out”, it seems

that “Local Graph” plays an important role in the performance, followed by “Content”

features. This suggests that social connections are important in determining retweets as

well as content factors.

5.7 Summary

Users of social media services are often simultaneously overwhelmed with the amount of

information delivered via their social connections and miss out on content that they might
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have liked to see. Both issues serve as difficulties to the users and drawbacks to the ser-

vices. These services can benefit from understanding user interests and how they interact

with the service, potentially predicting their behaviors in the future. We propose Co-

Factorization Machines (CoFM) to address the problem of simultaneously predicting user

decisions and modeling content in social media by analyzing rich information gathered

from Twitter. The task differs from conventional recommender systems as the cold-start

problem is ubiquitous, and rich features, including textual content, need to be considered.

Additionally, we discuss and compare ranking-based loss functions in the context of rec-

ommender systems, shedding light on how they vary from each other and perform in real

tasks, providing the first work in this direction. We explore a large number of features and

conduct experiments on a real-world dataset, concluding that CoFM with ranking-based loss

functions is superior to state-of-the-art methods and yields interpretable latent factors.

5.8 Bibliographic Notes

In this section, we review three lines of relevant research work: 1) collaborative filtering

and ranking, 2) collaborative filtering with content integration, and 3) Twitter user and

content modeling. We link them with our tasks and discuss the novelty of our work as

well.

Recommender systems which utilize LFM have gained significant attention because they

were used by the winning team of the Netflix Prize. However, simple LFM cannot easily

be coupled with additional information (features) in other recommendation scenarios.

Recently, researchers have explored how traditional LFM can be enhanced by exploiting rich

features generated by users. Three main paradigms are proposed for this purpose. The

first paradigm is “Regression Based Factor Models” (RBFM) and its extensions, proposed by

Agarwal, Chen and colleagues [1, 2, 3, 225], which have been successfully used in a variety
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of recommendation scenarios, such as social networks [213, 214], professional networks and

content recommendation. The basic idea behind RBFM is to replace zero-mean Gaussian

distributions usually used in a simple LFM with regression-based means. Thus, RBFM adds

another layer of regression on top of LFM, which can incorporate different types of features

effectively. However, RBFM can only handle 2-order data interactions and thus high-order

data structures (e.g., tensors) cannot be modeled. In addition, the proposed method,

training with Monte Carlo EM, is inefficient and cannot scale to large scale datasets

easily. The second paradigm is called “Factorization Machines” (FM), proposed by Rendle

et al. [165]. FM can handle, in theory, arbitrary orders of interactions between variables and

naturally deal with features. However, the existing formalism of FM has not been explored

with topical modeling of content and pairwise preferences learning has not been discussed

in the context of FM. The last paradigm is called “Feature-based matrix factorization”

(FBMF), proposed by Chen et al. [45], which is to combine LFM with linear regression. As

noted by Rendle [165], similar to RBFM, FBMF cannot handle high-order interactions either.

Additionally, FBMF can be viewed as a special case of FM.

Traditional collaborative filtering methods are trained and evaluated on pointwise-

based measures, such as Root-Mean-Square-Error (RMSE) and Mean-Square-Error (MSE),

essentially measuring how accurate each single prediction is, regardless of how items are

presented to users. Although the use of RMSE gained popularity through the Netflix prize

competition, ranking-based measures might be more appropriate than pointwise-based

measures since users are presented a ranked list of items calculated by recommendation

systems. Thus, it would be more natural to optimize the ranked list directly. Some

recent advances in recommender systems lie in this direction. For instance, Weimer et

al. [205] extended the maximum margin matrix factorization method (MMMF) by optimizing

a surrogate loss function approximating the NDCG ranking measure, a ranking-based

metric commonly used in the Information Retrieval (IR) community. However, the method

121



www.manaraa.com

proposed in the paper is complicated and arguably hard to scale to large datasets. A

margin ranking criterion, an ordinal loss, is introduced from the field of IR to collaborative

filtering by Weimer et al. [206] in the context of MMMF, which is a direct extension of

the hinge loss for Support Vector Machines. This max-margin loss essentially minimizes

AUC, which is the area under the ROC curve [16, 208]. A smooth version of hinge

loss which is also to minimize AUC, called Bayesian personalized ranking, is proposed by

Rendle et al. [167] and has yielded superior performance in tag recommendation. Recently,

Balakrishnan and Chopra [17] proposed a two-stage procedure for collaborative ranking.

Their proposal is to first train a matrix factorization model for users and items and treat

latent factors as features to feed into a standard learning-to-rank framework. Koren and

Sill [122] proposed a method to embed ordinal regression into matrix factorization by

predicting a full distribution over all ranks. An interesting point is that this method is

indeed a pointwise method. With a slightly different approach, Yang et al. [214] studied

user behaviors when browsing a list of items. The proposed framework includes two loss

functions that are comparable to multinomial logic model and a margin ranking criterion

but have more intuitive explanations. Though different ranking-based loss are proposed,

they are never compared.

Some recent developments in collaborative filtering have demonstrated the power to

integrate rich content from articles and scientific papers with user decisions to provide

better recommendation results. For instance, Agarwal and Chen [2] extended RBFM with

a latent Dirichlet allocation prior for latent factor models. A similar approach was in-

vestigated by Shan and Banerjee [178] as well. Wang and Blei [195] proposed a method

to combine matrix factorization with probabilistic topic modeling for recommending sci-

entific papers. The method cannot easily leverage additional features. One significant

advantage of these joint modeling methods is that latent factors obtained through content

modeling can reveal interpretable meanings to latent spaces and thus provide a unique
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way to uncover some hidden structures of the data. However, all these methods require

complicated inference algorithms which are not easily to scale to large datasets.

Recommender systems have been built specifically for Twitter. For instance, Kim and

Shim [115] argued that Twitter does not offer to find the most interesting tweet messages

for users. The authors proposed a probabilistic model derived from Probabilistic Latent

Semantic Analysis (PLSA) for collaborative filtering to recommend potential followers

to users in Twitter. The method does not consider any explicit features at all. Due to

the fact that Twitter users form a information network, researchers have tried to use

undirected graphical models to model such networks. For example, Yang et al. [215] used

a factor graph to model the spread of tweets. Lin et al. [132] proposed a generic joint

inference framework for topic diffusion and evolution in social network communities based

on Gaussian Random Fields, which also cannot integrate with rich features. Similarly,

Peng et al. [157] proposed a method based on Conditional Random Fields (CRF) to

predict how likely a tweet will be retweeted by a user. The proposed method suffered

from the difficulty to efficiently perform inference on graph-like CRFs. Duan et al. [63]

studied how learning to rank approaches can be used in ranking tweets. They explored a

number of features and used 20 query terms as input to train a RankSVM as the model. In

the present work, we do not have explicit queries while modeling user decisions and user-

generated content. Hong et al. [92] and Uysal and Croft [191] trained classifiers to predict

whether a tweet will be retweeted. However, the classifiers they trained are universal for

all users and hence cannot provide personalized results. Recently, Chen et al. [47] utilized

FBMF with a wide range of features to recommend tweets for users on Twitter. However,

the proposed method cannot provide much insight on how content contributes to users’

decisions and only one type of ranking loss function is used without comparisons. In

all, these methods either do not handle arbitrary features or do not obtain summarized

content (topics) from Twitter messages, preventing us from further understanding how
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users’ decisions are made. In this work, we will perform these two tasks simultaneously.
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Chapter 6

Information Filtering in

Professional Social Streams

In the current Web ecosystem, social media services are ubiquitous. With the rise of

websites like Facebook, Twitter, and LinkedIn, millions of users are connecting and com-

municating with each other over rich multimedia content, including text, images, video,

and audio. The content forms streams of social updates, which allow users to get in-

stantly informed on the latest news. When aggregated, the social update streams become

a powerful tool for monitoring the geopolitical situation in various regions. For instance,

social update streams have been heavily used to disseminate information during the “Arab

spring”. In addition, social update services become the ultimate platform for collecting

information in natural disasters, such as earthquakes and tsunamis [145].

Although social update streams provide a unique opportunity for users to obtain fresh

information, users commonly acknowledge two issues that prevent current social streams

from being sufficiently relevant, which causes deterioration of user experience and engage-

ment. First of all, while facing a large number of updates from their social connections,

users simply cannot consume them in an effective and efficient way. This is known as

125



www.manaraa.com

the problem of information overload (see, e.g., [29, 92]). Furthermore, social updates for

a user are usually limited in scope to their social circle, induced from their connections.

Thus, it is very difficult for a user to obtain information distributed outside of their circle,

even though it might match their interests. In order to obtain relevant information, users

spend long hours searching social media (see, e.g., [21, 146]). We call this problem infor-

mation shortage. To address both these problems, social media monitoring systems are

being built, which filter and recommend social updates to users based on numerous sig-

nals. This area has recently attracted close attention of academic and industrial research

communities.

The task of filtering and recommending social updates can be approached from various

perspectives. From the Information Retrieval (IR) perspective, constructing personalized

social streams can be cast into the classic ranking problem: the task is to rank social up-

dates by descending order of user interest. It may be true that some existing IR techniques

could be potentially applied to social stream ranking. However, user’s interests in social

streams are not represented in terms of a search query. Instead, queries are implicit and

have to be inferred. The absence of a search query distinguishes the social stream ranking

problem from many classic IR tasks. In addition, social information needs are more diver-

sified compared to traditional IR scenarios. Although traditional IR tools do not appear

to be directly applicable to ranking in social streams, some of recently developed learning

to rank approaches are very appealing to be used in the new setting.

From the perspective of Recommender Systems (RecSys), building a list of relevant

social updates can be viewed as recommending relevant items to users. Thus, many collab-

orative filtering techniques are applicable to the task of social stream ranking. However,

social stream systems are much more dynamic than traditional recommender systems:

many new updates can be pushed into the system every second. Therefore, the cold start

problem becomes even more severe in social stream systems. The traditional collaborative
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filtering paradigm needs to be adjusted to ranking social streams.

Surprisingly, little prior research work has been done to tackle the problem of social

stream ranking from the point of view of building an effective system. This is partially

due to the fact that no real-world dataset of social updates is openly available to the

research community – due to obvious reasons related to user privacy. Most commercial

ranking algorithms (e.g., the one used by Facebook) are proprietary. Indeed, a successful

content ranking system on social streams will not only provide more relevant information

to users and improve user engagement, but also shed the light on patterns of user behavior

and social trends, which might be strong signals for behavioral targeting in computational

advertising – the driving power of most Web 2.0 venues.

In this chapter, we start an open discussion on how to build effective systems for social

stream ranking (SSR). To the best of our knowledge, we are the first group of researchers to

elaborate technical details for such a system. More specifically, we address the problem as

an intersection of learning to rank, collaborative filtering and clickthrough modeling, while

leveraging ideas from information retrieval and recommender systems. Our contributions

are three-fold:

1. Analyze social streams (based on LinkedIn data) and provide some insights on users’

behavior;

2. Propose a novel probabilistic latent factor model with regressions on explicit features;

integrate the idea of learning to rank and collaborative filtering

3. Demonstrate the superior performance of our model by comparing with several non-

trivial real-world baselines.

The rest of the chapter is organized as follows. In Section 6.5, we compare SSR with

other related research areas. As we will point out, SSR is a unique setup to which existing

techniques cannot be applied directly. In Section 6.1, we review the problem of social
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Figure 6.1: A typical example of LinkedIn homepage.

stream ranking in the context of LinkedIn. In Section 6.2, we introduce our ranking model

step by step and compare it with some existing IR and collaborative filtering techniques.

In Section 6.3, we evaluate our model against a number of non-trivial baselines. We

conclude our paper in Section 6.4.

6.1 Overview of LinkedIn

Founded in December 2002 and launched in May 2003, LinkedIn1 is primarily used for

online professional networking. As of March 2012, LinkedIn has more than 160 million

registered users in more than 200 countries and territories. On LinkedIn, user profiles

play a central role for establishing professional existence and personal brand. Users can

1http://www.linkedin.com
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update their professional profiles to include a spectrum of content types (e.g., position de-

scriptions, publications, patents, open source projects, skills, etc.). In addition, LinkedIn

offers collaborative platforms to help users consume relevant news stories (e.g., LinkedIn

Today2), seek answers to questions on professional issues (e.g., LinkedIn Groups3), and

share useful content (e.g., LinkedIn Signal4). On the left-hand side of LinkedIn’s home-

page, a typical user will see a list of content items that come from their professional

connections. This update stream consists of a wide range of types of updates including

changes on their profiles (e.g., changes in their employment), shares of information (e.g.,

news articles, blog posts), and Twitter updates. These updates compose a social stream

for the user. A snapshot of a user’s homepage is shown in Figure 6.1 where the social

stream of a user is highlighted by a red rectangle, shown on the left hand side of the

screen.

As we have discussed in previous sections, delivering truly relevant social updates to

users is a very difficult task. Information overload is certainly a serious problem for users

who have hundreds of connections. In contrast, for newly joined users who do not have

a sufficient number of connections, a system could recommend potentially useful updates

to make the user adapt to the service more smoothly and quickly.

From the LinkedIn point of view, it is important to attract users to consume their

social content and interact with their social streams as it is a clear indicator of a healthy

engagement pattern. A steady, but badly delivered social stream may distract the user

and make them lose interest in the service. A weak social stream for new users may make

them question the benefits of the service. On the other hand, if a user interacts with the

social stream frequently, clicking “Like” buttons or making comments to others’ updates,

the user is likely to become more and more engaged.

2https://www.linkedin.com/today/
3https://www.linkedin.com/myGroups
4https://www.linkedin.com/signal/
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6.2 Social Stream Ranking

In this section, we will discuss the ingredients of our proposed model step by step, from

a simple linear model to a much more involved tensor factorization based latent factor

model. We start our discussion from why the problem of SSR cannot simply be treated

as a rating prediction problem, which is a classic setting in RecSys.

6.2.1 Evaluation Metrics

In traditional RecSys settings where the entities are users and items (e.g., the famous

Netflix competition5) forming a matrix of users by items, the main goal is to predict or

recover missing values in this matrix – if we treat existing ratings as observed values and

non-existing ratings as missing values of the matrix. The performance of recommender

systems is evaluated by how accurately a system can predict these values. For instance, in

the Netflix Prize, Rooted Mean Squared Error (RMSE) is used to measure the accuracy

of rating predictions. RMSE is defined as
√

1
N

∑n
i (xi − x̂i)2 where xi is the ground-truth

rating for rating i, x̂i is the predicted value and N is the total number of ratings to be

tested. Although it might be an appropriate evaluation metric for movie recommendation

tasks where multiple levels of ratings are available, two crucial issues will arise while using

it as an evaluation metric to SSR.

First of all, as we see in Figure 6.1, the final presentation of a social stream is a list

of items shown on the computer screen. Due to the limited space on the screen, users

can only see a portion of the list which usually only consists of a handful of updates.

Although users can always scroll down the list and even go to additional pages, not all

of them do that in practice. Thus, even if the accuracy of predictions is important, we

certainly wish to have higher-accuracy items on the top of the list rather than to have

the whole list slightly more accurate. This ordering information cannot be easily captured

5http://www.netflixprize.com/
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in accuracy-based metrics, like RMSE. In addition to the reason that accuracy-based

metrics may not be appropriate, in the practical sense, a system optimizing accuracy

might fail to produce reasonable results. As we will see, the users rarely interact with

the majority of the updates. In other words, users are only interested in a small number

of items. An accuracy-optimized system may overfit non-interacted items and yield good

performance overall but might not match the small portion of clicked updates. Indeed,

this drawback of accuracy-based metrics is also discussed in the collaborative filtering

literature (e.g., [167, 122, 213]).

Based on this discussion, we adopt rank-based metrics to evaluate the effectiveness of

SSR systems. Rank-based metrics are widely used in the IR community. In this paper,

we borrow Mean Average Precision from the traditional IR. We define the “precision” at

position k (Precision@k) of a social stream as (# of clicks in top positions)/k. Then, an

average measure across all top m positions (Average Precision) for user u is defined as

(
∑m

k=1 Precision@k× lk)/(# of clicks for ranked list of user u) where lk is a binary indica-

tor whether the position k has been clicked or not and m is the total number of positions

evaluated. Note that the Average Precision is evaluated per user. We can average it across

all users, resulting in the Mean Average Precision (MAP) measure.

6.2.2 Dataset

Before discussing the details of our dataset, we introduce the concept of impression. Every

time a user logs in LinkedIn’s homepage, the system generates a list of candidate social

updates from many sources, mainly based on the user’s social connections. This list of

updates can be small or large, depending on the user’s social circle. If the number of

updates in the list exceeds a certain threshold (e.g., 10 − 15), these updates cannot be

shown on a single screen, and the user will need to scroll down. An impression is a list of

updates that a user has actually seen on the screen. Given historical data, we can “replay”
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the users’ activity while analyzing impressions. Note that social updates are not distinct:

one specific update produced by a user or a company can be shown to many users.

Since our experimental setting is “simulation” (details will be discussed in Section

6.2.1), we discard all impressions without any clicks because these impressions do not

change our experimental results (as measured by MAP). Note that there is a deeper

argument on this decision. Remember that one issue associated with social streams is their

sparsity. Indeed, only a small number of impressions attract users and a handful of clicks

is performed on such impressions, compared to the large amount of impressions produced

in total. Thus, it might be useless for any model to fit these non-interacted impressions.

Focusing on impressions that actually matter reduces the training set significantly and

produces better results, which we saw in our empirical studies. Thus, only impressions

with at least one click remain in our dataset. In our experiments, we also filter out

impressions with less than five items.

We report on two datasets of LinkedIn’s social update stream. Both are subsamples

of the actual social stream collected by LinkedIn’s engineering team. The first dataset

was taken from April, 2011 stream, while the second was taken from September, 2011

stream. The basic statistics on the two datasets are shown in Table 6.1 where “M” means

million. The numbers are obfuscated due to commercial reason. The reason why we take

two datasets that are not consequent in time is to demonstrate that the performance of

different algorithms is indeed consistent over different time periods.

6.2.3 Linear Models

In this section, we will discuss several simple linear models to tackle the problem of SSR.

Given a social update, a user can choose to respond to this update or not. For simplicity,

we treat all kinds of responses as a “click” event and no response as a “non-click” event.

Thus, we focus on binary responses in this work. We denote y as a vector of responses
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Data Summary April, 2011 September, 2011

Impressions 3M-4M 10M-20M

Updates 30M-40M 100M-200M

Clicked Updates 3M-4M 10M-20M

Non-clicked Updates 27M-36M 90M-180M

Distinct Updates 10M-20M 20M-30M

Recipients 1M-2M 4M-5M

Producers 4M-5M 6M-7M

Table 6.1: The basic statistics about the dataset.

to all social updates, across all impressions. This way, we concatenate updates from all

impressions together and drop the notion of an impression. The ordering of elements in

y does not matter as we only care about the correspondence: the response yi corresponds

to the i-th update in the entire dataset and fi represents the estimation of yi from the

models described later. In addition, we define the following auxiliary functions: r(i) is the

recipient of update i, s(i) is the sender of update i, t(i) is the type of update i, and c(i)

is the sender type. Let R be the set of recipients, S be the set of senders, T be the set of

types, I be the set of social updates.

Feature Model (FM): One straightforward model is linear estimation, which predicts

the response by a linear combination of features. For a specific update i, we collect their

corresponding features. Let φ be a feature vector – we use subscript to indicate its

corresponding type. For instance, φr(i) represents the feature vector (e.g., profile) for the

recipient user of update i. A simple prediction of yi – a linear combination of user features

and update features – can be defined as:

f
(1)
i = βT

r(i)φr(i) +αT
r(i)φi (6.1)

where βu and αu are per-user coefficients to be learned from the training set. This model

is essentially equivalent to the one where user features and update features are combined
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into a single feature vector and a per-user coefficient to be learned. Note, an even more

simpler model could be also considered where a universal coefficient is used, instead of

per-user coefficients. However, this model would be too restricted and personalization

cannot be applied.

Latent Bias Model (LBM): Here, we introduce a linear model to explain the clicks

on items. We start with an assumption that whether a new item i will be clicked by a

user depends on the average click rate: fi = µ where µ is the average click rate across

all items and all users. Certainly, this estimation is too coarse and inaccurate because,

as we mentioned before, the majority of items are not clicked. We can extend this base

estimation by incorporating a wide range of biases: 1) type (category) bias, 2) item bias,

3) recipient bias, 4) sender type bias and 5) sender bias. Adding these biases is very

intuitive. Certain types of updates (e.g., notifications about changes in user profiles,

including changes in job titles etc.) receive more attentions than others. Users tend

to respond (e.g., click “Like” button or make comments) more often on these types of

updates than on others. In addition, some individual items are more popular than others

as their content might be more interesting (e.g., breaking news, unexpected stories). From

the perspective of senders and recipients, biases are also significant. For instance, some

updates are coming from companies that inform their followers about their new products

and services – those updates are far more popular than status updates from individual

users. Moreover, certain users are more engaged than others which introduces user biases.

Therefore, all these biases (i.e., prior knowledge) can capture a wide range of effects of

interactions. Let b denote biases and the subscript to indicate the type of biases. Also,

the subscript can be an index for a feature. Therefore, we can have the following linear

estimation:

f
(2)
i = µ+ bi + bt(i) + br(i) + bc(i) + bs(i) (6.2)
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Note that these biases are generally unknown. We treat them as latent variables to be

learned from the dataset. Comparing with LR, which depends on feature vectors some

of which might be difficult to calculate and update (e.g., graph-based features, content

based features), this model is appealing since no extra information is needed for learning,

besides requiring indicators.

Combining FM and LBM: It is straightforward to consider combining FM and

LBM together. Thus, the combined model will enjoy the freedom that different parts of

the model will explain a variety of user behaviors. The combined model is simply:

f
(3)
i = f

(1)
i + f

(2)
i (6.3)

Note, this is essentially a linear feature model with biases decomposed into many aspects.

Incorporating Temporal Effects: Social streams are temporally sensitive in nature.

Users focus on fresh information and interact with them while they often do not bother

to look at old updates. We model the temporal effects of updates by a simple feature:

trecency = timp − tupt where timp is the numerical time when a user sees a particular

impression and tupt is the numerical time when an update is produced. These feature values

would be different for different updates. Even for the same update, depending on when

recipients access their update streams, the feature value can vary greatly. Incorporating

this feature into our estimation can be as follows:

f4i = f
(∗)
i + ζ × trecency (6.4)

where f
(∗)
i can be any estimator defined in Equations (6.1, 6.2 and 6.3) and ζ is a free

parameter, indicating the importance of recency of updates. Note that ζ can be learned

from the training set and can also be treated as another personalized parameter. However,
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we fix it across all users and manually tune this parameter mainly because of two rea-

sons. Firstly, since not all users interact with social streams regularly and new users are

coming all the time, we need to provide reasonably relevant social updates for these users.

Under these circumstances, explicit features might not be available (e.g., new users) and

biases are not learned reliably from the training set (e.g., not enough interactions before).

Therefore, a safe choice is to rank items chronologically. In addition to that, users who are

heavily engaged with their social streams are familiar with existing ranking schemes which

are primarily based on recency. We do not want to suddenly change their expectations

on their future impressions. Hence, we set ζ such that the temporal effect can always

be an important factor and indeed the learned coefficients and biases will dominate the

estimation only when it is necessary.

Since responses are binary, we impose a logistic loss on predictions and true values,

yielding learning procedures of the logistic regression flavor. All these linear models can

be learned effectively by minimizing the following objective function for each update i:

l1(yi, f
(∗)
i ) = log

[
1 + exp(−yif∗i )

]
(6.5)

where yi ∈ {±1} is the ground-truth response and f∗i is the estimated response from the

models defined above. In common practice, in order to avoid overfitting the training set,

we also use L2 regularizer to shrink all parameters towards zero. Taking Equation (6.4)

as an example, the final objective function is:

L1 =
∑

i

l1(yi, f
4
i ) + λ1

(∑

i

||bi||2 +
∑

t(i)

||bt(i)||2 +
∑

c(i)

||bc(i)||2

+
∑

r(i)

||br(i)||2 +
∑

s(i)

||bs(i)||2
)
+ λ2

∑

u

(
||βu||2F + ||αu||2F

)

where λ1 and λ2 are two regularization parameters to be manually tuned. Many methods

are available to optimize the objective function above. Here, we adopt the Stochastic
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Gradient Descent (SGD) method, a widely used learning method for large-scale data, to

learn parameters. SGD requires gradients, which can be effectively calculated as follows:

∂L1

∂b∗
= −

∑

i

[
1− σ(yif

4
i )
]
yi + 2λ1

∑

∗
b∗

∂L1

∂βr(i),k

= −
∑

i

[
1− σ(yif

4
i )
]
yiφr(i),k + 2λ2βr(i),k

∂L1

∂αi,k
= −

∑

i

[
1− σ(yif

4
i )
]
yiφi,k + 2λ2αi,k

where b∗ represents any bias terms, βr(i),k and αi,k represent k-th element of coefficient

for user r(i) and update i respectively. Note that σ(x) = 1
1+exp(−x) .

6.2.4 Latent Factor Models

Although linear models are efficient, they are usually oversimplified and cannot capture

interactions between different effects. Latent Factor Models (LFM) are widely used in

recommender systems (e.g., [121, 211, 213, 214]) and have proven effective in many sce-

narios (e.g., [121]). Specifically, LFM can model the interactions between different types

of entities such as user-user and user-item, discovering their latent relationships. In this

section, we discuss two types of LFM: matrix factorization and tensor factorization, and

see how they can be applied to the task of SSR.

Matrix Factorization: In traditional CF, matrix factorization techniques are used

to exploit user-item interactions. A straightforward idea would be to directly apply ma-

trix factorization methods to user-update matrix. However, this idea is not practical.

As discussed above, social streams have new updates arriving all the time, and existing

updates are only consumed by a small number of users. Thus, cold-start problems are

much more severe here, compared to traditional CF where the user base and the item

base are relatively stable. Here, we impose a latent factor ηu ∈ R
k for each recipient and
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Figure 6.2: CANDECOMP/PARAFAC decomposition of a tensor, a three-way array.

producer and factorize the recipient-producer matrix to predict the actions on updates.

We describe the model in a probabilistic way:

ηu ∼ P (ηu |0, σ2I) u ∈ {R,S}

yi ∼ P (yi |ηr(i),ηs(i), b∗, µ)

where b∗ is any biases introduced in Section 6.2.3, R and S are the set of recipients and

producers respectively. For P (ηu |0, σ2I), it is usually assumed to be Gaussian or Laplace,

corresponding to L2 or L1 regularization on latent factors respectively. Here, we use a

multivariate Gaussian assumption. For P (yi |ηr(i),ηs(i), b∗, µ), we assume:

yi ∼ P (yi | fi)

fi = µ+ bi + bt(i) + br(i) + bc(i) + bs(i) + ηT
r(i)ηs(i) + ǫ

where ǫ allows a Gaussian distribution. Thus, the final generative process also follows

a Gaussian distribution. This formalism is similar to the one introduced in [121]. The

model described here is very intuitive. Whether a user u1 is going to click on an update

from a user/company u2 depends on u1’s and u2’s affinity.

Tensor Factorization: As social streams have different entities like recipients, pro-

ducers and categories, it would be natural to directly model the multi-way data interaction,

rather than concentrating on two-way relationships. It has been shown that high-order
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relational modeling can improve the performance of CF systems in many scenarios, for

instance in social tag recommendations [166, 168].Here, we focus on one particular three-

way relationship: recipient-producer-category of the update. We associate latent factors

ηx ∈ R
k for these three types of entities. Similar to the matrix case, we define the following

generative procedures:

ηx ∼ P (ηx |0, σ2I) x ∈ {R,S,T }

yi ∼ P (yi | fi)

where fi is defined as:

fi = µ+ bi + bt(i) + br(i) + bc(i) + bs(i) +
∑

k

ηr(i),kηs(i),kηt(i),k + ǫ

where η∗,k represents the k-th element in the vector and ǫ again follows a Gaus-

sian distribution. This particular form of tensor decomposition is known as CANDE-

COMP/PARAFAC (CP) decomposition [120], depicted in Figure 6.2 where the dimen-

sionality of three latent factors is the same. There are two important properties about CP

decomposition. Firstly, it is a direct analogue to factorization methods in two-way array

(matrix) data where latent factors share the same latent space. Secondly, CP decompo-

sition has a nice yet surprising property that it has a unique solution of decomposition

where matrix factorization does not enjoy this result [120]. This property indeed provides

a theoretical guarantee to the decomposition and may be a reason for better performance.

We are aware of other forms of tensor factorization as well. For instance, Tucker

decomposition [120], where the dimensionality of different latent factors varies, is widely

used in many applications and applied to social media as well (e.g., [166, 211]). However,

we do not choose the Tucker decomposition for our settings because not only it requires

to pre-specify the dimensionality of all factors separately, but also does not guarantee
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Figure 6.3: A graphical representation of regression-based tensor factor model.

uniqueness of the decomposition result.

Incorporating Features: Both matrix factorization and tensor factorization dis-

cussed above do not directly incorporate explicit features. Here, we introduce features

into the model by employing two levels of regression models. The basic idea is that la-

tent features will depend on explicit features and final responses are derived from latent

features. The first level regression models are defined as:

ηx(∗) = Mxφx(∗) + ǫx x ∈ {R,S,T }

where φx(∗) represents a feature vector for entity x and Mx is a transformation matrix to

be learned. If ǫ∗ follows a zero-mean k-dimensional Gaussian distribution, latent factors

η∗ indeed follow multivariate Gaussian distribution with the mean of a transformation of

explicit feature vectors. This way, explicit feature space is mapped to latent feature space.

In addition to binding latent factors to explicit features, other biases may also have

the same prior distributions:

bx(∗) = πT
xφx(∗) + ǫbx

where πx is a regression coefficient for entity x. If the error term ǫbx follows a Gaussian
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distribution, biases bx(∗) will also follow a Gaussian distribution centered at a transfor-

mation from explicit features. Note that this two-level regression scheme can be applied

to matrix factorization as well as tensor factorization. The idea to use regression priors

for matrix factorization has been explored by [1, 214] but not yet discussed on multi-way

data relations like tensors. The final graphical representation of the model is shown in

Figure 6.3 where square nodes represent features and circled nodes represents unknown

variables. The response y in the middle is observed in the training set but to be predicted

in the test set.

In addition to the method described here to incorporate features, we are aware of other

possibilities, such as [165] where latent factors and explicit features are treated as same

set of features.

Like linear models from Section 6.2.3, LFM (with features) can also be learned through

a Maximum A Posterior (MAP) estimation. Taking Tensor Factorization with Features

as an example, the problem of minimizing the negative log posterior of the model boils

down to the following objective:

L2 =
∑

i

L1(yi, fi) +
∑

x∈{R,S,T }
λx
∑

x(i)

||ηx(i) −Mxφx(i)||2F

+
∑

x∈{I,R,S,T ,C}
λbx
∑

x(i)

||bx(i) − πT
xφx(i)||2

+
∑

x∈{I,R,S,T ,C}

(
λπx ||πx||2F + λMx ||M||2F

)

where all constant terms are ignored and all λ terms are manually tuned regularization

parameters. For both matrix factorization and CP decomposition, a number of techniques

are available to solve the objective function. For instance, the alternating least squares

(ALS) method is the “workhorse” [120] for both matrix and tensor factorization. However,

here, we still adopt a SGD method, which can scale to the dataset with which we are
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working. In order to use SGD, the gradients of latent factors can be derived. Firstly, we

focus on latent factors:

∂L2

∂ηr(i),k

=−
∑

i

[
1− σ(yifi)

]
yiηs(i),kηt(i),k

+ 2λr

(
ηr(i),k −Mr[k]φr(i)

)

∂L2

∂ηt(i),k

=−
∑

i

[
1− σ(yifi)

]
yiηr(i),kηs(i),k

+ 2λt

(
ηt(i),k −Mt[k]φt(i)

)

∂L2

∂ηs(i),k

=−
∑

i

[
1− σ(yifi)

]
yiηr(i),kηt(i),k

+ 2λs

(
ηs(i),k −Ms[k]φs(i)

)

where η∗,k is the k-th element of the vector and M∗[k] is the k-th row of the matrix. For

all biases, gradients ∂L2
∂b

∗(i)
are as follows:

−
∑

i∈b
∗(i)

[
1− σ(yifi)

]
yi + 2λb∗

(
b∗(i) − πT

∗ φ∗(i)
)

where ∗ means a particular type of bias and i ∈ b∗(i) represents the updates those bias

type match the type of interests. The gradients ∂L2
∂Mx[k,m]

for matrix Mx can be derived as:

2λx
∑

x(i)

(
ηx(i),k −Mx[k]φx(i)

)(
− φx(i),k

)
+2λMxMx[k,m]

where Mx[k,m] is the (k,m)-th element in the matrix Mx. And finally, the gradients for

regression coefficients ∂L2
∂πx,k

can be computed as:

2λbx
∑

x(i)

(
bx(i) − πT

xφx(i)

)(
−φx(i),k

)
+2λπxπx,k
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6.2.5 Pairwise Learning

So far, we have demonstrated two different types of models: linear models and latent fac-

tor models. Both of them minimize certain errors in the learning process. As discussed in

Section 6.2.1, a ranking-based evaluation metric, MAP is used in our experiments. Thus, it

is more reasonable to directly optimize this ranking metric. However, it is difficult to opti-

mize ranking measures directly [221, 42, 162] due to their discrete nature. Although some

techniques (e.g., [42, 162]) have been developed to derive smoothed surrogate functions to

approximate these ranking measures, including MAP, they are usually complicated and

expensive to apply to large scale scenarios. Here, we use a much simpler approach: derive

pairwise preferences from users’ impressions and learn a pairwise ranking function.

First, let Oi be the set of updates in the impression i, Oi,+ be the set of updates

clicked by the user and Oi,− be the set of updates not clicked by the user. Remember that

we eliminate impressions without any clicks (see 6.2.2). Therefore, we guarantee that the

method described here can be applied to all impressions in our dataset. For any pair of

updates (m,n) where m ∈ Oi,+ and n ∈ Oi,−, we can always construct a preference label

lm,n = 1, meaning that update m is favored over update n in impression i. Under this

setting, we have the new objective function for impression i:

l2(i, f) =
1

|Oi,+||Oi,−|
∑

m∈Oi,+

∑

n∈Oi,−

σ
(
fm − fn

)
(6.6)

where σ is a logit function. This new objective function is no longer to fit a single observed

label (click or not) but to optimize a pairwise preference induced from impressions. Similar

ideas are also explored in [167, 213, 122]. With this new objective function, we can replace

the original loss function defined in Equation (6.5) in both linear model learning and factor

model learning. Gradients are omitted due to space limits.

143



www.manaraa.com

6.2.6 Summary & Discussion

We discussed several issues related to our proposed methods in this sub-section: 1) param-

eter tuning, 2) scalability and 3) feature treatment. For parameter tuning, while it is not

a significant problem for Linear Models, as they can be trained efficiently, it might be pro-

hibitively expensive to tune a Latent Factor Model. In this work, we do not heavily tune

parameters and only wish to see whether these proposed approaches work in principle.

One way to deploy a “parameter-free” model might be to consider a Bayesian treatment

of Latent Factor Models, like [175, 211]. However, the sheer amount of data and its con-

tinuous nature prevent us to explore Bayesian treatment in this work and leave it to the

future work. In terms of scalability, we conduct experiments on a single machine in this

work but we do notice that SGD can be paralleled [232]. Thus, we can scale our model to

even larger datasets. The way we integrate explicit features and latent factors is through

regression models. However, this is not the only way to deal with this kind of problem.

For instance, matrix co-factorization (see, e.g., [181]) and tensor co-factorization can be

another paradigm of combining explicit features and hidden features.

6.3 Experimental Results

In this section, we demonstrate the effectiveness of our model, through a comprehensive

comparison with non-trivial baselines. The dataset used in our experiments is described

in Section 6.2.2. Before we go into the details of the experimental results, we first discuss

our experimental setting in Section 6.3.1 and then all developed models in Section 6.3.2.

6.3.1 Experimental Setting

Two standard settings are available to evaluate the effectiveness of systems for SSR. One is

to test each model against an existing system in a online setting where both systems run in
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parallel for a similar audience in a reasonable period of time. After this, the effectiveness

of both systems can be calculated using certain measurements, like error rate or ranking

metrics. This is a classic A/B testing scenario. The advantage of A/B testing is obvious:

it provides a real comparison between models. However, it might be time-consuming and

even impossible to compare many models in a batch. In addition, some models require

tuning parameters, which may risk the business of the service a company offers. Thus, we

do not use A/B testing in this paper and leave it to the future work.

In this paper, we simulate real settings of SSR, conducting off-line experiments. More

specifically, we gather historical data from LinkedIn user logs, which capturing all impres-

sions users have consumed. Since we know which updates are clicked in each impression,

it is easy to replay all these impressions and reorder the updates. Thus, we can produce a

“new” impression for users in the dataset. The drawback of this approach to experiments

is that we cannot show “new” ordering of impressions that are not clicked by users at

all because whether users would have clicked them or not is impossible to test. This is

another reason why we drop all impressions without any clicks (Section 6.2.2).

The dataset for one month is divided into weeks. We train our models on one week

and test them on the following week. This setting results in more than 70% items being

new in test data each week, which is an evidence to the fact that SSR is different from

RecSys and IR.

6.3.2 Models & Features

We compare several models in our experiments. All models used in the following experi-

ments are shown in Table 6.2. The baseline is a proprietary system currently deployed in

the product of LinkedIn homepage. FM, LBM and their combination (FBM) are examples of

simple linear models while MF, TF with their feature enhanced extensions (MF2 and TF2)

are examples of latent factor models. For all models, a point-wise loss function (Equation
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Models Comments

Baseline (BL) LinkedIn

Feature Model (FM) Section 6.2.3

Latent Bias Model (LBM) Section 6.2.3

Feature Bias Model (FBM) Section 6.2.3

Matrix Factorization (MF) Section 6.2.4

Tensor Factorization (TF) Section 6.2.4

Matrix Factorization with Features (MF2) Section 6.2.4

Tensor Factorization with Features (TF2) Section 6.2.4

Table 6.2: All models used in our experiments.

Features Comments

Seniority the seniority level of a user

Visiting how frequently a user visits LinkedIn

PageRank discretized PageRank scores

Connectedness how well a user is connected to others

Social strength how tight a user’s connections is

Professional how professional an update’s language is

Recency the freshness of an update (see Section 6.2.3)

Table 6.3: All features used in our experiments.

(6.5)) and a pairwise loss function (6.6) are both tested. Without stating it explicitly, all

models include the temporal effect feature discussed in Section 6.2.3 while the parame-

ter ζ, the balance between recency and relevance, is manually tuned. All regularization

parameters are simply set to 1. We understand that this may not be an optimal choice.

For tuning a reasonable learning rate in SGD and ζ, we use the first day in the test

week as a “validation” day and choose the parameter setting that can provide the optimal

performance on the day. We fix the parameters for the remaining days in the test week.

Some of linear models and latent factor models require explicit features. In this paper,

we include several important features to enhance our models. Note that we are aware

of many other possible features. However, it is not our goal to study the effectiveness
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Training/Testing BL FM LBM FBM

4 01(Tr.)/4 08(Te.) 0.5278 0.5317 0.5943 0.5520

4 08(Tr.)/4 15(Te.) 0.5435 0.5509 0.6040 0.5574

4 15(Tr.)/4 22(Te.) 0.5218 0.5246 0.5823 0.5235

9 01(Tr.)/9 10(Te.) 0.4829 0.4911 0.5457 0.4984

9 10(Tr.)/9 18(Te.) 0.4779 0.4798 0.5432 0.4915

9 18(Tr.)/9 25(Te.) 0.4768 0.4803 0.5329 0.4886

Table 6.4: The comparison between linear models.

of a particular feature in this work. All features are shown in Table 6.3. “Seniority”

measures the seniority level of a user’s job title. “Visiting” measures how well engaged a

user is (our assumption is that a frequent visitor is likely to interact with his/her social

stream). “PageRank” (details in [33]) and “Connectedness” measure how a user connects

with other users. Presumably, a highly respected and well connected user can attract

others to interact with their update streams. “Social strength” is a proprietary product

used in LinkedIn, measuring the connection closeness between two users. “Professional”

measures how likely an update is similar in its language to professional profiles of LinkedIn

users (i.e. how professional an update is). The assumption is that users may favor pro-

fessional updates over non-professional updates on LinkedIn because it is a professional

social network.

6.3.3 Results on Linear Models

In this sub-section, we focus on the comparison between the baseline and all linear models.

In this Subsection, we focus on the comparison between the baseline and all linear models.

The results are shown in Table 6.4 where the best performance is shown in bold. The

first column indicates how models are trained and tested. For instance, the first number

“4 01” means the models are trained on the week of April 1st and tested on the week of

April 8th (8-th is the date for validation of parameter tuning) where “Tr.” and “Te.” are
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Type Description Bias bt

Job Seeker Product Update 0.5765

Joining Sub-Group 0.5407

Company News 0.4592

Joining Group 0.2625

Profile Picture Update 0.2516

Initiating Direct Ads Campaign 0.2253

Profile Update 0.1394

Table 6.5: Example of highly ranked types of updates

shorthand for “Training” and “Testing”, respectively. We conduct experiments on two

separate months to avoid some seasonal fluctuations on the data. The numbers shown on

the right part of the table are MAP scores.

Our first observation is that the baseline of MAP in September is lower than its in

April, implying that updates in the lower positions in the lists get clicked more often over

time. One possible explanation is that users become familiar with their social streams and

start to find interesting updates manually, looking at more items down the list. The second

observation is that all linear models, including FM, LBM and FBM, perform better than the

baseline, consistently on two-month datasets. However, for FM, which only depends on

explicit features, the performance is very close to the baseline. This is reasonable because

only a handful of features are used in our experiments and we do expect that these features

are not likely discriminative. On the other hand, LBM, a model only depending on implicit

feedback, has consistently 5% − 6% absolute improvements on MAP over the baseline.

This confirms that it is vital to exploit different aspects of users’ feedbacks and capture

them through bias modeling (e.g., [121, 119]). Indeed, FBM gives the most improvements

over the baseline in all our experiments. The idea is simple and easy to implement. For the

combination of a pure feature-based model FM and a pure implicit-feedback-based model

LBM, FBM does perform as someone might expect. It is significantly worse than LBM and
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Training/Testing MF TF MF2 TF2

4 01(Tr.)/4 08(Te.) 0.5955 0.6258 0.5951 0.6336

4 08(Tr.)/4 15(Te.) 0.6079 0.6228 0.6088 0.6535

4 15(Tr.)/4 22(Te.) 0.5962 0.6014 0.5991 0.6312

9 01(Tr.)/9 10(Te.) 0.5511 0.5766 0.5523 0.6003

9 10(Tr.)/9 18(Te.) 0.5412 0.5833 0.5449 0.6109

9 18(Tr.)/9 25(Te.) 0.5359 0.5799 0.5362 0.5992

Table 6.6: The comparison between latent factor models.

almost identical to FM, which might indicate that simply integrating explicit features with

biases may not be a good choice and more sophisticated approaches are needed.

LBM can also reveal some interesting patterns from the dataset, which might not be

easily identified by other methods. For instance, we can figure out the effective popularity

of different types of updates by looking at the values of bt. The positivity or negativity

of these values indicate whether a particular type of update correlates with clicks or non-

clicks, while the magnitude of these values means how strongly this correlation might be.

We show some samples of top ranked types in Table 6.5, which are positively correlated

with clicks. From the table, we see that job related updates, company-related updates

are comparatively attractive. In addition, users pay attention to profile changes of their

connections and new connections established by their friends. Note that the value shown in

the table is “automatically” normalized in the sense that SGD only updates corresponding

parameters when the algorithm meets such type of updates. Also, the ratio of positive

examples of a particular type will drive the parameter to strong positive numbers. Thus,

no post-processing steps are required. This is an example of how our model can be used

in simple data analysis tasks.

149



www.manaraa.com

6.3.4 Results on Latent Factor Models

As we discussed earlier, latent factor models are widely used and have been proven to

be superior to linear models. We conduct the same experiments as linear models and

show their results in Table 6.6 where the best performance is shown in bold. Here, we

compare between pure factorization-based models (MF and TF) and feature-enhanced factor

models (MF2 and TF2). Note that all these models are built upon LBM and therefore the

performance should at least match LBM. The second column of the table shows the results

from MF, which is essentially to factorize the recipient-sender matrix and uncover latent

structures. Unfortunately, the gain of performance of MF over LBM is marginal and even

not observable. On the other hand, TF offers significant improvements and leads another

3% − 4% absolute boost for MAP on average. As we discussed before, social stream

data is much more complex than traditional recommender system data (in various CF

scenarios). Users may interact with certain updates because their senders are famous

people or because the type of updates (e.g., news or twitter updates) is of a particular

interest. Thus, tensor factorization can model multi-way relationships better than matrix

factorization models them via a decomposition to multiple two-way relationships. Indeed,

bias terms of recipients and senders in LBM might capture the basic relationship between

them and a matrix factorization does not provide any additional benefits. Furthermore,

we have already discussed why we do not employ the user-item matrix in our setting: new

items are much more common in social streams, compared to other recommender system

setups. Thus, it is very interesting to see that well-established matrix-based factor models

do not work equally well on social streams as they do in traditional CF scenarios. We

believe that a more thorough investigation on this issue is desired.

For latent factor models with features, it is noticeable that MF2 failed to outperform LBM

again while TF2 has gained additional 2%−3% absolute improvement over TF consistently.

This is a yet another signal that matrix factorization does not work well in SSR. For TF2,
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Figure 6.4: Parameter Sensitivity Analysis.

the increase of MAP can be explained by the two-level regression structure, that explicit

features will help create latent features when new items or new users come into the system,

effectively mitigating the cold-start problem. The performance of TF2 also validates that

regression-based latent factor models are an effective approach to integrate explicit features

with latent features. We also study the sensitivity of parameters, especially the temporal

balance weight ζ and the number of dimensions in latent factor models. Taking the first

week of September as an example, the effects of both parameters are shown in Figure 6.4

where the effect of ζ is shown on the top and the effect of # of dimensions in latent factor

models is shown on the bottom. The first observation is that both parameters are vital to

the final performance and they are very sensitive if they are out of certain ranges. For ζ,

the optimal performance is achieved when it is around 250− 300 while for dimensionality,

the results suggest that a reasonable number (20− 50) is the key to success.

151



www.manaraa.com

Training/Testing LBM MF MF2 TF TF2

4 01(Tr.)/4 08(Te.) 0.6169 0.6033 0.6151 0.6358 0.6532

4 08(Tr.)/4 15(Te.) 0.6188 0.6168 0.6188 0.6528 0.6641

4 15(Tr.)/4 22(Te.) 0.5897 0.6104 0.6191 0.6014 0.6402

9 01(Tr.)/9 10(Te.) 0.5644 0.5716 0.5723 0.5966 0.6207

9 10(Tr.)/9 18(Te.) 0.5593 0.5621 0.5607 0.5999 0.6183

Table 6.7: The effects of pair-wise learning.

6.3.5 Results on Pairwise Learning

The results demonstrated so far focus on point-wise learning procedure. In other words,

the objective function imposed by models is still error-based loss function. Here, we focus

on how to improve performance by switching the objective function to pairwise preferences

learning. More specifically, we conduct similar experiments as previous ones and report

results on LBM, MF, TF MF2 and TF2, shown in Table 6.7 where the best performance is shown

in bold. Other models are omitted due to their poor performance. First of all, we notice

that almost all models can benefit from pairwise learning, even for the methods which

did not show significant gains in previous experiments, such as MF and MF2. However, on

another perspective, the overall improvement of a pairwise learning is not huge, usually

yielding 1.5% − 2% improvement on MAP. One possibility is that the pairwise learning

here is still näıve. More sophisticated session enabled learning procedures (e.g., [213]) are

to be investigated in the future.

6.4 Summary

In this chapter, we investigate the problem of ranking social updates from a unique per-

spective of LinkedIn, the largest professional social network in the world. More specifically,

we address the task as an intersection of learning to rank, collaborative filtering and click-

through modeling, leveraging ideas from information retrieval and recommender systems.
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We propose a novel probabilistic latent factor model with regressions on explicit features,

comparing a number of non-trivial baselines and gaining an approximately 10% improve-

ment on MAP over the baseline. In addition to superior performance demonstrated in

the paper, we shed some light on social updates on LinkedIn and how users interact with

them, which might be applicable for social streams in general. For future work, it is inter-

esting to see whether it is possible to develop efficient Bayesian treatment of latent models.

In addition, other models might be explored as we demonstrate that state-of-the-art CF

models do not provide comparable success in SSR. We also wish to extend our work by

considering the diversity of information users wish to consume.

6.5 Bibliographic Notes

In this section, we briefly overview three research directions related to social stream rank-

ing: (a) learning to rank, (b) recommender systems, and (c) clickthrough models. Some of

the approaches to tackle these problems are relevant to SSR and can be adapted. Along

with their similarities to SSR, we also reveal their significant differences from SSR, and

discuss the uniqueness of SSR as a new research field.

Learning to Rank (LtoR): In IR, a generic task is to construct a ranked list of doc-

uments relevant to a query issued by a user. Although ranking is a fundamental problem

in IR and has been studied for decades, it still remains challenging. Instead of proposing

carefully designed ranking models based on heuristics or traditional probabilistic princi-

ples, a recent trend is to apply machine learning techniques to learn ranking functions

automatically, i.e., LtoR [137]. In the standard LtoR setting, a typical training set con-

sists of queries with their associated documents represented by feature vectors as well as

corresponding relevance judgements. A machine learning algorithm is employed to learn
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the ranking model, which can predict the ground truth label in the training set as ac-

curately as possible – in terms of a loss function. In the test phase, when a new query

comes in, the learned model is applied to sort the documents according to their relevance

to the query, and return the corresponding ranked list to the user as the response to the

query. Depending on different hypotheses, input spaces, output spaces and loss functions,

approaches to LtoR can be loosely grouped into three categories: point-wise, pairwise,

and list-wise.

Although the goal of LtoR is to provide a ranked list of documents (items) for users

– a similar aim as of SSR – it is different from SSR in three aspects. First, social stream

systems usually do not have explicit queries and users do not have to specify any explicit

input in order to obtain relevant output from the systems. Second, each user’s social

stream is highly dependent on their social context. Therefore, compared to IR, social

streams are intrinsically personalized. The second difference leads to the third fundamental

distinction between SSR and LtoR: relevance judgements are difficult to obtain in SSR and

the notion of relevance can be hard to define. Nevertheless, some strategies and insights

developed in LtoR can be borrowed for SSR.

Recommender Systems (RecSys): As we will see, RecSys plays a key role in many

online services, improving user experience and engagement. In the simplest form, RecSys

aim to present a user with a list of items in the hope that these items would match the user’s

interests to some extent. Content-based methods and neighborhood methods are widely

used in RecSys. Content-based methods convert the problem of recommendation into an

IR problem by constructing user profiles and item profiles. A user profile serves as a query

to an index of item profiles. Similarity measures (e.g., cosine similarity, Jaccard coefficient)

are utilized to match users and items. In contrast, neighborhood methods usually explore

the notion of topical locality, assuming that the interaction between users and items can

be predicted solely upon observations of “neighboring” users or items. That is, a user’s
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interest in an item is approximated by the average of neighboring observations. Although

content-based methods and neighborhood methods are popular due to their simplicity,

they cannot exploit hidden interactions between users and items. Recently, another class

of methods called latent factor models has gained increasing attention. These methods are

highly accurate and can easily incorporate various biases. However, compared to content-

based methods and neighborhood methods, latent factor models are more vulnerable to

the appearance of new items and new users, i.e., to the cold-start problem. Therefore,

these three approaches are complementary to each other in practice (e.g., [121]). In a

general sense, SSR may be considered as RecSys, however, SSR usually does not have

item ratings, and user feedback to SSR is often implicit.

Click-through Model (CM): both IR (see, e.g., [109, 55]) and RecSys [167, 213]

researchers have noticed that users’ feedback is vital for learning a high-quality model. In

order to derive users’ preferences and model users’ clickthrough data, a variety of CMs

have been proposed. The most common approach to clickthrough modeling is to construct

a generative model aiming to explain the training data (see, e.g., [225, 99]). Other models

that derive users’ preferences have been proposed as well (see, e.g., [167, 34, 213, 122]).

While generative models are specifically designed to understand clickthrough data, it is

difficult to incorporate them into current IR or RecSys frameworks, partially due to the

fact that generative models are hard to adapt to optimizing a non-probabilistic objective.

Indeed, it is easier to first obtain user preferences from clickthrough data analysis and

then adapt existing IR/RecSys tools to using these preferences (e.g., [167, 34, 213]). Our

paper is inspired from this idea.

In addition to these three directions, some efforts have been made to directly tackle

the problem of SSR. For instance, Chen et al. [46] discussed the problem of recommend-

ing content on Twitter by considering many dimensions, including content sources, topic

interests of users and social voting. However, their study focused on empirical validations
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of several features (signals) and the dataset used is significantly smaller than ours. Their

later work [45] goes beyond single Tweet recommendation to conversation recommenda-

tion. Duan et al. [63] noticed that the ranking problem of Twitter can be treated as an

application of learning to rank. Their dataset is also small and relationships between

recipients and senders are not explored. As we have discussed, SSR is not simply a LtoR

problem. Choudhury et al. [57] argued that SSR should consider the problem of “diver-

sity” and they tested their greedy algorithm on 67 employees from a large technology

corporation. Our work differs from all this related work in three significant ways: 1) we

test our proposed method on a large-scale, real-world dataset; 2) we propose a principled

way to address SSR in the context of LtoR, CF and CM; and 3) we conduct comprehensive

evaluation of our model against several models that underlie state-of-the-art recommender

systems and report a consistent improvement in performance.
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Chapter 7

Information Filtering with Topic

Modeling

7.1 Introduction

In previous chapters, we observed that topical modeling can help or improve performance

in many informaiton filtering tasks in online conversational media. In this chapter, we

would like to investigate this direction more thouroughly. More specifically, we would like

to take Twitter as a typical example of online conversational media to study how topic

modeling can enhance the performance.

In recent years, social networks such as Facebook, Myspace and Twitter have become

important communication tools for people across the globe. These websites are increas-

ingly used for communicating breaking news, eyewitness accounts and organizing large

groups of people. Users of these websites have become accustomed to receiving timely up-

dates on important events, both of personal and global value. For instance, Twitter was

used to propagate information in real-time in many crisis situations such as the aftermath

of the Iran election, the tsunami in Samoa and the Haiti earthquakes. Many organizations
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and celebrities use their Twitter accounts to connect to customers and fans.

Recent studies in a variety of research areas show increasing interests in micro-blogging

services, especially Twitter. Early work mainly focused on quantitative studies on a num-

ber of aspects and characteristics of Twitter. For example, Java et al. [104] studied the

topological and geographical properties of Twitter’s social network in 2007 and found that

the network has high degree correlation and reciprocity, indicating close mutual acquain-

tances among users. Krishnamurthy et al. [123] studied the geographical distribution of

Twitter users and their behaviors among several independent crawls. The authors mostly

agree with the classification of user intentions presented by Java et al., but also point

out evangelists and miscreants (spammers) that are looking to follow anyone. Weng et

al. [207] studied the problem of identifying influential users on Twitter by proposing an

extension of the PageRank algorithm to measure the influence taking both the topical sim-

ilarity between users and the link structure into account. They also presented evidence to

support the existence of homophily in Twitter. In their work, they utilized topic models

(described below) to understand users’ interests.

Among the research mentioned above and others, researchers wish to use messages

posted by users to infer users’ interests, model social relationships, track news stories and

identify emerging topics. However, several natural limitations of messages prevent some

standard text mining tools to be employed with their full potentials. First, messages on

Twitter (which are called “tweets”) are restricted to 140 characters. This is substantially

different from traditional information retrieval and web search. Second, within this short

length, users invented many techniques to expand the semantics that are carried out by

the messages. For example, when posting external URLs, users may use URL shortening

services (e.g., http://www.bit.ly). In addition, users heavily use self-defined hash tags

starting with “#” to identify certain events or topics. Therefore, from the perspective of

length (e.g., in characters), the content in messages is limited while it may convey rich
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meanings.

Topic models [25] are powerful tools to identify latent text patterns in the content.

They are applied in a wide range of areas including recent work on Twitter (e.g., [163]).

Social media differs from some standard text domain (e.g., citation network, web pages)

where topic models are usually utilized in a number of ways. One important fact is

that there exists many “aggregation strategies” in social media that we usually want to

consider them simultaneously. For example, on Twitter, we usually want to obtain topics

associated with messages and their authors as well. Researchers typically only discuss

one of them. Weng et al. [207] trained a topic model on aggregated users’ messages while

Ramage et al. [163] used a slightly modified topic model on individual messages. Neither

of them mentioned the other possibility. Indeed, to our knowledge, there is no empirical

or theoretical study to show which method is more effective, or whether there exists some

more powerful way to train the models.

In this paper, we want to address the problem of how to effectively train a standard

topic model in short text environments. Although our experiments are solely based on

Twitter, we believe that some of the discussions can be also applied to other scenarios,

such as chat logs, discussion boards and blog comments. More specifically, we want to

answer these questions in the paper:

• If we use different aggregation strategies and train topic models, do we obtain similar

topics or are the topics learned substantially different?

• Can we learn a topic model more quickly that retains its usefulness, without any

modifications to standard models?

• Can we shed some light on how we can build new models to fully utilize the structure

of short text environments?
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With a set of carefully designed experiments in both quantitative and qualitative perspec-

tive and two more real-world classification problems, in this paper, we make the following

contributions:

• Topics learned by using different aggregation strategies of the data are substantially

different from each other.

• Training a standard topic model on aggregated user messages leads to a faster train-

ing process and better quality.

• Topic mixture distributions learned by topic models can be a good set of supplemen-

tary features in classification problems, significantly improving overall classification

performance.

This chapter is organized as follows. In Section 7.5, we outline some related work on the

topic. In Section 7.2, we introduce several methods to learn topic models on Twitter.

Section 7.3 details our experiments and major conclusions. In Section 7.4, we summarize

our contributions.

7.2 Methodology

In this section, we will introduce several methods to train topic models on Twitter and

discuss their technical details. In this paper, we mainly consider two basic models: LDA

and author-topic model [171]. We first briefly review these two models and then discuss

their adaptation to Twitter.

7.2.1 LDA and the Author-Topic Model

Latent Dirichlet Allocation is an unsupervised machine learning technique which identifies

latent topic information in large document collections. It uses a “bag of words” approach,
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which treats each document as a vector of word counts. Each document is represented as a

probability distribution over some topics, while each topic is represented as a probability

distribution over a number of words. LDA defines the following generative process for

each document in the collection:

1. For each document, pick a topic from its distribution over topics.

2. Sample a word from the distribution over the words associated with the chosen topic.

3. The process is repeated for all the words in the document.

More formally, each document in the collection is associated with a multinomial distribu-

tion over T topics, which is denoted as θ. Each topic is associated with a multinomial

distribution over words, denoted as φ. Both θ and φ have Dirichlet prior with hyper-

parameters α and β respectively. For each word in one document d, a topic z is sampled

from the multinomial distribution θ associated with the document and a word w from the

multinomial distribution φ associated with topic z is sampled consequently. This genera-

tive process is repeated Nd times where Nd is the total number of words in the document

d.

The Author-Topic Model (AT model) is an extension of LDA, which was first proposed

in [172] and further expanded in [171]. Under this model, each word w in a document is

associated with two latent variables: an author, x and a topic, z. Similarly to LDA, each

author in the collection is associated with a multinomial distribution over T topics, denoted

as θ. Each topic is associated with a multinomial distribution over words, denoted as φ.

Here, differing from LDA, the observed variables for an individual document is the set of

authors and the words in the document. The formal generative process of Author-Topic

Model is as follows:

1. For each document, given the vector of authors.
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2. For each word in the document, conditioned on the author set ad, choose an author

xdi ∼ Uniform(ad).

3. Conditioned on xdi, choose a topic zdi.

4. Conditioned on zdi, choose a word wdi.

Here, one important difference between the AT model and LDA is that there is no topic

mixture for an individual document. Therefore, if we want to model documents and

authors simultaneously, certain extension or special treatment is needed. A detailed de-

scription of the model can be found in [171].

7.2.2 Topic Modeling Schemes

Recall that our goal is to infer a topic mixture θ for both messages and authors in the

corpus. In this sub-section, we will introduce several methods to achieve this goal.

First, we discuss a very natural choice of training models. The process is as follows:

1. Train LDA on all training messages.

2. Aggregate all training messages generated by the same user into a training profile

for that user.

3. Aggregate all testing messages generated by the same user into a testing profile for

that user.

4. Taking training user profiles, testing user profiles and testing messages as “new

documents”, use the trained model to infer a topic mixtures for each of them.

We denote this method as the MSG scheme. Note that we do not combine all user profiles

into a single set of user profiles simply because some users may be part of the training set,
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and thus the aggregation of all user profiles may give an unfair advantage to the model to

achieve better performance.

We can also train the model on aggregated user profiles, which leads to the following

process:

1. Train LDA on aggregated user profiles, each of which combines all training messages

generated by the same user.

2. Aggregate all testing messages generated by the same user into testing user profiles.

3. Taking training messages, testing user profiles and testing messages as “new docu-

ments”, use the trained model to infer a topic mixture for each of them.

We denote the method as the USER scheme.

The third scheme, which we denote as the TERM scheme, is more unusual. The

process is as follows:

1. For each term in the training set, aggregate all the messages that contain this term

into a training term profile

2. Train LDA on all training term profiles.

3. Build user profiles in training and testing set respectively.

4. Taking training messages, training user profiles, testing user profiles and testing

messages as “new documents”, use the trained model to infer a topic mixture for

each of them.

The rationale for this scheme is that on Twitter, users often use self-defined hash tags

(i.e., terms starting with “#”) to identify certain topics or events. Building term profiles

may allow us to obtain topics related to these hash tags directly.
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These schemes each have their own advantages. For MSG, it is straightforward and eas-

ily understandable but the training process is based on individual messages, whose content

is very limited. The model may not have enough information to learn the topic patterns.

More specifically, the occurrences of terms in one message play less discriminative role

compared to lengthy documents (e.g., aggregated user profiles or term profiles) where the

model has enough term counts to know how terms are related. For the USER and TERM

schemes, the models have enough content and might provide a more “accurate” result.

For the AT model, we extend it to allow each message to have a “fictitious” author

who is indeed the message itself. Thus, for each message, we either sample the words

from the author specific topic mixture or sample them from the message specific topic

mixture. Note that the relationship between message specific “route” and author specific

“route” is “OR”. In other words, we can imagine the process is that an author is writing

a message that he will mainly choose the words he is usually interested while choosing

some set of words more specific to the current message. Therefore, under this assumption,

most of terms in a particular message will choose author “route”. This “OR” relationship

indeed allows us learn a relatively accurate model for authors but less satisfied model for

messages. In our experiments, we find that the topic mixture for messages learned by the

extended AT model is usually too sparse and leads to worse results than the MSG scheme.

In this paper, we use the AT model to denote the extended AT model with message specific

mixtures.

There is another aspect of issues related to different schemes. Usually, the number of

users is several magnitude less than the number of messages. Therefore, it would take sig-

nificantly less time to train a model with the USER scheme rather than the MSG scheme.

The same argument can be made for the TERM scheme as well. In addition, the assump-

tion of topic mixture of topic models might eventually lead to different optimal choice of

T (the number of topics) for different schemes. For the MSG scheme, we are modeling
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the number of topics existing in messages. Since a message is short and the number of

messages is huge, we usually need a larger number of topics to obtain a reasonable model.

On the other hand, for the USER scheme, we are modeling the number of topics for users.

We can arguably say that each user may only have a relatively small number of topics

that they are interested in and the total number of users are comparatively smaller than

the volume of messages. Hence, through our experiments, the optimal number of topics

is usually smaller than its in MSG scheme.

Note that in this paper we only explore schemes that do not require any significant

modifications to the LDA or AT models. We do believe that better extensions of LDA

which consider authors and messages simultaneously might be more useful.

7.3 Experiments

In this section, we present the experimental evaluation of the schemes discussed in the

previous section. For the experiments we use Twitter data obtained through both the

streaming and normal APIs. We begin by describing some preprocessing steps of our

data. Then, we test a variety of schemes discussed in the previous section on two realistic

tasks. By studying the results, we will show that topic modeling is a powerful tool for

short text messages.

7.3.1 Tasks

In our experiments, we have two different tasks, whose performance can be potentially

enhanced by topic modeling techniques:

• Predicting popular Twitter messages

• Classifying Twitter users and corresponding messages into topical categories
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For the first task, we consider the number of times a message has been retweeted as

a measure of popularity. Therefore, we convert the problem into predicting whether a

message will be retweeted in the future. Since we only have an incomplete set of Twitter

messages and we cannot directly recover complete retweet patterns, we need to construct

a reasonable dataset from our sample. Consider a collection of messages, some of which

are duplicates of others. Before we measure if two messages are “similar”, we take the

following preprocessing steps: 1) We remove links from the messages; 2) We remove any

word stating with the “@” character; 3) We remove non-latin characters in the message

and convert all characters to lower case; and, 4) We calculate the hash value of all the

messages. We use MD5 to obtain the signature for all messages. If two messages share the

same MD5 value, we define them as “similar” to each other. We group similar messages

together and sort them by time. All the versions of a message form a chain. For all

messages in the chain except the first, we further filter out those messages without “RT”.

In other words, it does not matter if the first message is a retweet, but all subsequent

messages in the chain must be retweets. For all filtered chains, if there are n messages in

a particular chain, we take the first n − 1 messages as “positive instances”, which means

they will be retweeted in the future, and the last one as “negative instance”. In addition,

all other messages which are not in any chains are also considered as “negative instances”.

Our task is to correctly predict all “positive instances” in the dataset.

The second task is more straightforward. In several Twitter directories (e.g.,

http://www.wefollow.com) and in the official Twitter site, lists of users with categories

associated with them is provided. We take more than 250 verified users from the offi-

cial Twitter Suggestions categories1 under the assumption that these verified accounts

are recognized as valid by real people and organizations. The categories do not overlap.

We monitored the latest 150 messages generated by these users and try to classify the

1http://twitter.com/invitations/suggestions
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Table 7.1: Users From Twitter Suggestions

Category ID Category Name # of Users

0 Art & Design 3

1 Books 3

2 Business 8

3 Charity 15

4 Entertainment 42

5 Family 4

6 Fashion 5

7 Food & Drink 19

8 Funny 23

9 Health 9

10 Music 43

11 News 16

12 Politics 27

13 Science 4

14 Sports 39

15 Technology 22

messages and the account into their corresponding categories which we obtained from

Twitter Suggestion, under the assumption that these verified users strongly adhere to

their corresponding categories that most of the messages generated by them are in the

same topic.

Prior to attempting the two tasks, we also studied the topics learned by the models

empirically mainly from two aspects: 1) Whether the topics obtained by different schemes

are similar or not; and, 2) What is the quality of the topics. We compare the topics in

both qualitative and quantitative ways.

7.3.2 Dataset

Our experiments employ the data from Twitter’s APIs2. For the first task, we collected

messages through Twitter’s Streaming API, which is a push-style API with different levels

2http://dev.twitter.com/
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Table 7.2: “Similar” Topics Found by JS Divergence

The Topic Obtained by MSG scheme

[link] our from help world their people news more haiti red photo every two
school end american change water million learn women through visit america fight
money far girls national wine save young office children giving earth month community
needs local trip relief future project malaria uk ones #haiti number program
college south power donate launch between worth education full others students
history safe room group lives summer during california earthquake past charity

The Topic Obtained by USER scheme

[link] rt and we day on your is us help haiti are by from you new world with about
this have red people support at thanks join out will more great twitter can their
up water read video w check today were make work here get photo what please
last be women live kids an school children who save event vote now project relief
pls malaria life #haiti friends every them has watch donate team thank follow sign
global text keep working thx do need free learn earthquake many community million

of access which constantly delivers a small fraction of Twitter messages over a permanent

TCP connection. We were granted the “Garden-hose” level of access at that time, which

the company describes as providing a “statistically significant sample” of the messages

that flow through their system. In our experiments, we use messages from the first and

second week of November 2009 but we also find similar results by conducting the same

experiments on other weeks. In order to reduce the dataset to a reasonable size that

can be used to evaluate the techniques easily, we remove all non-latin characters from the

messages. In addition, we also remove the users who only appear once in our dataset, with

their corresponding messages. This results in a dataset of 1,992,758 messages and 514,130

users. In our experiments, we neither remove stop words nor perform stemming on the

words. We replace all URLs with the word “link” and keep all hash tags. Therefore, we

have 3,697,498 distinct terms for the two weeks of data.

For the second task, we crawled 274 verified users of 16 categories from Twitter Sug-

gestion and their last 150 messages if available. In order to classify users, we aggregate

all the messages generated by the same user into a giant document, denote as a “user
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profile”. Similarly, we do not remove stop words and do not perform stemming. Thus, the

dataset contains 52,606 distinct terms and 50,447 messages in total. The detailed number

of users per category is shown in Table 7.1.

7.3.3 Evaluation Metrics & Parameters Setting

We cast both tasks into classification problems where the first one is to classify messages

into retweets and non-retweets (note, “retweets” represent the messages will be retweeted

in the future) and the second is to classify messages and users into topical categories.

The baseline method for both tasks is a classifier using TF-IDF weighting values as the

features.

For the first task, our basic evaluation scheme is to train the classifier on the first

week and test it on the second week while for the second one, a simple cross-validation

scheme is used. For the first task, we use Precision, Recall and F-Measure (F1 score) as

the evaluation metric with their definitions shown as follows:

Precision =
number of true positives

number of true positives + false positives

Recall =
number of true positives

number of true positives + false negatives

F-Measure = 2× Precision × Recall

Precision + Recall

The vast majority of the instances in our dataset are negative ones (e.g., the messages will

not be retweeted in the future). Therefore, a naive classifier may easily achieve more than

90% accuracy by choosing every instance as negative, which does not make much sense in

our case. Hence, we do not report any results based on accuracy for the first task. For the

second task, we use classification accuracy as the evaluation metric. We not only look at
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Figure 7.1: The Average Minimal JS Divergence

the classification accuracy for each category but also care about the overall classification

accuracy.

Throughout the experiments, we use L2-regularized Logistic Regression as our classi-

fier3. In our preliminary experiments, we also tried L1 regularization, which corresponds

to learning a sparse representation of features. Since we did not find any performance gains

through L1 regularization, we only report the results on the L2 regularized classifier.

All the topic models used in the experiments have symmetric Dirichlet priors. We

notice that asymmetric priors may lead to better results, suggested by [194]. However, in

order to reduce the effect of optimizing hyper-parameters, we fix all of them to symmetric

Dirichlet priors. More specifically, for β, we set it to 0.01 in all experiments and for α,

we adopt the commonly used 50/T heuristics where T is the number of topics. In our

experiments, we use Collapsed Gibbs Sampling [79] with speed-up techniques introduced

in [216], which can be scaled to our large dataset.
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7.3.4 Topic Modeling

In this section, we mainly study two questions: 1) whether different training schemes cause

the model to learn different topics from the dataset; and, 2) what is the quality of topics

learned from the dataset by different schemes. The dataset we used in this sub-section is

the topical classification dataset described in Section 4.1.

In order to answer the first question, we need to map topics learned by different

schemes. Due to the “exchangeable” property of topic models [28], the topics learned

from different runs of the models are not directly correspond, even for the exactly same

settings. Therefore, a mapping process is required to find same or similar topics. In this

work, we use Jensen-Shannon (JS) divergence to measure the similarity between topics.

The JS divergence is a symmetric measure of the similarity of two pairs of distributions.

The measure is 0 only for identical distributions and approaches infinity as the two differ

more and more. Formally, it is defined as the average of the KL divergence of each

distribution to the average of the two distributions:

DJS =
1

2
DKL(P ||R) +

1

2
DKL(Q||R)

R =
1

2
(P +Q)

where DKL(A||B) represents the KL divergence between variable A and B. In our case,

the KL divergence is calculated as follows:

DKL(A||B) =
M∑

n=1

φna log
φna
φnb

whereM is the number of distinct term types and φna is the probability of term n in topic

a. For each topic i, we obtain a corresponding topic j with the minimal JS divergence

3http://www.csie.ntu.edu.tw/˜cjlin/liblinear/
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Figure 7.2: The Average Kendall’s τ

score where topic i and j are trained through different schemes.

Let us first look at the results qualitatively. In Table 7.2, we list two topics identified

by minimal JS divergence as “similar topics” where two models are trained on the dataset

for the second task and the number of topics T = 10. The upper part of the table shows

the topic found by the MSG scheme and the bottom part shows the topic obtained by

the USER scheme. All the terms shown in the table are the topic terms sorted by φ

scores. In other words, these terms are generated by the topics with high probabilities.

Not very surprisingly, the top terms found by different schemes do not match with each

other exactly. However, by carefully reviewing the terms, we find that most of them are

related to some news events (e.g., Haiti earthquake) and politics.

In order to better quantify the difference between topics, we use two metrics based on

JS divergence. One is to calculate the average divergence between “similar” topics, which

we denote “the average minimal JS divergence”. More specifically, for each topic i, we first

find a “similar” topic j with minimal JS divergence. Then, we calculate the average of JS

divergence over all discovered “similar” topics. Figure 7.1 displays the average minimal JS

divergence between different models. In this figure, we see that there is obvious difference

between topics learned by different schemes or models. Topics learned by the USER
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scheme are substantially different from the topics learned by the MSG scheme and JS

divergence slightly increases with increasing number of topics. Compared to the USER

scheme, topics learned by the TERM scheme and the AT model are closer to the topics

of the MSG scheme. Note that almost all the JS divergence values are far from 0, which

indicates that the probabilities of terms in each topic indeed differ apart.

From JS divergence, we conclude that the probabilities learned are different but we do

not know how these difference may influence the relative positions of terms ranked in the

topics. Therefore, the second metric we use is to measure the difference between rankings

of terms obtained by topics. As shown in Table 7.2, while some of the terms found by

different schemes are all ranked highly (e.g., haiti, relief), the exact ranking position is

not the same. By looking at the discrepancy between rankings, we can understand how

topics deviate from each other and how different models agree with each other. Here, we

use Kendall’s τ to measure the agreement between rankings. Given two different rankings

of the same m items, Kendall’s τ is defined as:

τ =
P −Q

P +Q

where P is the number of pairs of items in two rankings that are concordant and Q is the

number of pairs of items in two rankings that are not concordant. τ ranges from −1 to

1, with 1 meaning the two rankings are identical and −1 meaning one is in the reverse

order of the other. If τ = 0, it means that 50% of the pairs are concordant while 50% of

the pairs are discordant. We take the top 500 terms ranked by “similar” models identified

by minimal JS divergence and calculate the τ values. Figure 7.2 shows the results of τ

values between “similar” topics. Two immediate observations can be discovered. First,

the disagreement between the MSG scheme and the USER scheme is substantially larger

than other schemes. Second, as the number of topics increases, the disagreement increases.
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Figure 7.3: Normalized Mutual Information

Next, we would like to know the quality of topics found by the models. The dataset

we used is still the topical classification dataset containing sixteen categories. Since we

know the ground truth label of all the messages in the dataset (their categories), we can

measure the quality by how likely the topics agree with the true category labels. Here, we

use Normalized Mutual Information (NMI), which can be defined as follows:

NMI(Ω,C) =
I(Ω,C)

[H(Ω) +H(C)]/2

where I(Ω,C) is mutual information between set Ω and C and H(A) is the entropy. NMI is

always a number between 0 and 1. NMI may achieve 1 if the clustering results can exactly

match category labels while 0 if two sets are independent. Details of the calculation of

NMI can be found in [139]. For each message, we use the maximum value in topic mixture

θ to determine its cluster, which leads to a “hard” clustering result. After this mapping

process, we compute NMI with the labels and the results are shown in Figure 7.3. From

the figure, we see that NMI values are low in general. Clusters assigned by the USER

scheme matches labels significantly better than other schemes. The NMI values by the

AT model are nearly zero, indicating that they almost do not match class labels at all. As

discussed before, the AT model does not provide a fully formalized generation process for
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Table 7.3: The Comparison of Performance on Retweet Prediction

Scheme Precision Recall F1

TF-IDF 0.4216 0.3999 0.4105

MSG (100) 0.5088 0.2837 0.3643

USER (40) 0.6075 0.3677 0.4581

TERM (70) 0.5292 0.3061 0.3879

AT (70) 0.4811 0.2654 0.3421

TF-IDF + MSG 0.5150 0.3546 0.4200

TF-IDF + USER 0.6142 0.3897 0.4768

TF-IDF + TERM 0.5303 0.3582 0.4276

TF-IDF + AT 0.4736 0.3622 0.4104

documents. Therefore, the quality of topic mixture learned for messages is comparatively

poor.

In conclusion, topics obtained by different schemes usually vary substantially. As

shown in the experiments, the USER scheme might achieve better agreement with prede-

fined labels, if available.

7.3.5 Predicting Popular Messages

In this section, we would like to see how the schemes and models discussed can influ-

ence classification performance. Here, we consider the problem of predicting potential

“retweets”. Remember, we treat the problem as a classification problem where the input

is a set of features and the output tells us whether the target message will be retweeted

in the future or not.

We first use TF-IDF weighting scores as features and train a Logistic Regression clas-

sifier. The result is shown in the first row of Table 7.3. Then, we train topic models

according to the different schemes and obtain topic mixture θ for both messages and au-

thors as introduced in the Section 7.2. For different schemes, we only report the best
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performance and its corresponding number of topics. We only test the number of top-

ics in the range of 20 to 150. The results are shown from the second row to the fifth

row (the first half of the Table) in Table 7.3. The first conclusion we can draw is that

most of results are worse compared to the baseline, TF-IDF, while only the topics trained

by USER scheme significantly outperform the baseline. In the last sub-section, we see

that the topics trained by USER scheme achieve higher NMI value, which implies that

USER scheme might more likely match the underlying category information. Although

other schemes do not perform well, we notice that the Precision is improved by all these

schemes. If we argue that Precision is more valuable in this task (because once we make a

“positive” decision, we have less chance to be wrong), we can conclude that topic models

indeed help us.

Some literature [28] suggested that if we solely use topic mixture as features, we may

not achieve better performance than TF-IDF. Thus, we combine topic model features and

TF-IDF features and obtain the results in the second half (from 6th row to the bottom) of

the Table 7.3. The results are trained on a classifier using the best performing topic model

features with TF-IDF features. We can see that most of them improve performance and

TF-IDF with USER scheme outperforms the previous best one that only uses the topic

features. Surprisingly, the AT model performs the worse in the experiments and combining

TF-IDF features does not give the AT model much boost in the performance.

In this task, we see that although sometimes topic features may not outperform simple

TF-IDF features, it is good practice to combine them. USER scheme consistently provides

good results, compared to other models.

7.3.6 User & Message Classification

In this section, we will see the results of the second task, classifying messages and authors

into topical categories. First, let us turn our attention to the performance on message
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Table 7.4: The performance of TF-IDF features on Message Classification

Category Accuracy Category Accuracy

0 0.3000 1 0.2143

2 0.2756 3 0.5909

4 0.4722 5 0.1250

6 0.2577 7 0.3553

8 0.3459 9 0.6471

10 0.5544 11 0.4026

12 0.5350 13 0.3553

14 0.6220 15 0.4185

Average: 0.4792

Table 7.5: The best performance of USER Scheme on Message Classification

Category Accuracy Category Accuracy

0 0.5000 1 0.0000

2 0.5128 3 0.9583

4 0.8223 5 0.0000

6 0.3814 7 0.8899

8 0.9082 9 0.7386

10 0.8718 11 0.8636

12 0.8132 13 0.5263

14 0.9330 15 0.9022

Average: 0.8291

classification. Recall that we have 274 users from 16 categories in the dataset. For each

user, we assume that all the messages generated by this user fall into the same category

as the user. Therefore, for message classification, we use 90% of messages for training and

10% for testing and report the results on 5-fold cross validation. The baseline method is

to use the TF-IDF weighting scores as features to train the classifier, which is shown in

Table 7.4. Note that the category ids correspond to the categories introduced in Table 7.1.

The overall accuracy is around 47% where the high performance is achieved in “Health”

and “Sports” categories.

Again, similar to the first task, we use the topic mixture θ for both messages and
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Table 7.6: The best performance of MSG Scheme on Message Classification

Category Accuracy Category Accuracy

0 0.5000 1 0.3036

2 0.1218 3 0.9583

4 0.6934 5 0.0000

6 0.1753 7 0.8899

8 0.8894 9 0.8693

10 0.8277 11 0.7403

12 0.7749 13 0.5263

14 0.9732 15 0.8451

Average: 0.7838

users learned by topic models as features. We test the features in two settings, only using

topic features and combining with TF-IDF features. We only report the best performance

with its number of topics while we test the topic numbers from 10 to 150. Table 7.5

shows the best results obtained by USER scheme when the number of topics T = 50.

Note, the overall accuracy is significantly improved and it is almost twice as accurate as

raw TF-IDF features. However, we also note that the classifier results in zero accuracy in

some categories. Category 1 (“Books”) and category 5 (“Family”) are two cases where the

classifier does not achieve one valid instance. One potential reason for this phenomenon

is that the number of instances in these categories are significantly smaller than other

categories, which prevent the classifier and topic models to learn enough information

about them. Table 7.6 shows the best results by the MSG scheme as T = 100. First, the

overall accuracy is improved by TF-IDF features but lower than USER scheme. Second,

we still have “Family” category with 0 accuracy. Due to space limits on the paper, we do

not include detailed performance results for the TERM scheme and the AT model. The

highest accuracy achieved by the TERM scheme is 0.6684 with T = 100 and by the AT

model is 0.5459 when T = 150. Both of them are far worse than the MSG and USER

schemes but still better than raw TF-IDF scores. When we combine topic features with
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Table 7.7: The best performance of TF-IDF + USER on Message Classification

Category Accuracy Category Accuracy

0 0.3000 1 0.2500

2 0.2692 3 0.5985

4 0.4776 5 0.1250

6 0.2680 7 0.3491

8 0.3388 9 0.6797

10 0.5492 11 0.4026

12 0.5478 13 0.3816

14 0.6327 15 0.4266

Average: 0.4838

TF-IDF features, unlike the first task shown in the last sub-section, the performance is

always worse than only using topic features and only slightly better than solely using

TF-IDF values. We only report the best results in Table 7.7, which is trained through

USER scheme with T = 40. We notice that by combining TF-IDF features we can avoid

the “zero” accuracy situation in all our experiments. Therefore, to some extent, TF-

IDF features can capture some micro-level characteristics of categories while the topic

features are usually too high level (since the feature is indeed topic mixture not the topic

distribution itself).

Now, let us turn to the problem of classifying users into topical categories. Similar as

message classification, we split 90% of messages and aggregate the messages in training set

for each user to build the user profiles. So, the training user profiles and testing profiles

are always different and do not mixed. Again, TF-IDF is calculated as features for user

profiles, which are aggregations of all messages generated by the same user. The baseline

is shown in Table 7.8. Surprisingly, the performance is very high, almost twice higher

than the baseline in message classification. For category “Business” and “Charity”, the

classifier distinguished all instances successfully. In fact, in our experiments, the classifier

trained on topic features performs much worse than the baseline regardless of schemes.
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Table 7.8: The Performance of TF-IDF on User Classification

Category Accuracy Category Accuracy

0 0.5000 1 0.6667

2 1.0000 3 1.0000

4 0.9756 5 0.5000

6 0.4000 7 0.7895

8 0.8261 9 0.8750

10 0.9767 11 0.8750

12 1.0000 13 0.5000

14 0.9474 15 0.8636

Average: 0.9051

We only report the best performing results in Table 7.9, which is obtained through USER

scheme with T = 20. We notice that not only the overall accuracy is not as good as

TF-IDF features but using topic features also results in several zero accuracy in different

categories. One reason is again the content in those categories is limited. An interesting

point is that if we combine TF-IDF features with topic features, the overall performance is

still around 90% (in fact, only with marginal improvement). Remember, for user profiles,

we crawled the latest 150 updates for each user, if available. Therefore, for most users,

the profile already contain enough information to learn. This situation is significantly

different from message classification where we have the problem of sparsity.

Compared to the results on message classification where topic features play an impor-

tant role to improve the performance and user classification where topic features fail to

outperform the baseline, we believe that topic models can help us model short text while

for longer content, more sophisticated models might be required to improve performance

(e.g., Supervised LDA [27], Label LDA [164]).
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Table 7.9: The Best Performance of USER on User Classification

Category Accuracy Category Accuracy

0 0.0000 1 0.0000

2 0.0000 3 0.5333

4 0.5610 5 0.0000

6 0.0000 7 0.1053

8 0.0000 9 0.5000

10 0.6279 11 0.0000

12 0.7600 13 0.0000

14 0.7895 15 0.3182

Average: 0.4380

7.4 Summary

Although we do not introduce new topic models to address the issues of short text modeling

especially in microblogging environments in this paper, our work sheds some light on how

research on topic models can be conducted for short text scenarios. More specifically,

through our experiments, we demonstrate that the effectiveness of trained topic models

can be highly influenced by the length of the “documents”; namely, a better model can

be trained by aggregating short messages. This argument has attracted little attention

in the research community in the past and should be justified through more thorough

experiments and theoretical analysis. In addition, our empirical study demonstrated that

topic modeling approaches can be very useful for short text either as solely used features

or as complementary features for multiple real-world tasks. (Note that this does not mean

that the model itself should be trained on short text and we show that a model trained on

aggregated longer text can yield better performance.) We also showed that when content

information is already large enough (e.g., in user classification), topic models become

less effective compared to simple TF-IDF scores. Moreover, through the experiments, we

showed that the simple extension to the AT model does not yield better modeling for

messages and users and indeed it is worse than training a standard LDA model on user
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aggregated profiles. We conjecture that the reason may be the “OR” nature of the AT

model while a message is either “generated” by the message or by an author. We suggest

that future models might examine how to model a hierarchical structure between users

and messages.

In this paper, we conducted extensive qualitative and quantitative experiments on

three proposed schemes based on standard LDA and one extended model based on the AT

model. We compared a number of aspects of these schemes and models, including how

the topics learned by these models differ from each other and their quality. In addition,

we showed how topic models can help other applications, such as classification problems.

In the experiments we demonstrated that topic models learned from aggregated messages

by the same user may lead to superior performance in classification problems and topic

model features can improve performance in general, especially when the research targets

are messages.

7.5 Bibliographic Notes

Topic modeling is gaining increasingly attention in different text mining communities.

latent Dirichlet allocation (LDA) [28] is becoming a standard tool in topic modeling. As a

result, LDA has been extended in a variety of ways, and in particular for social networks

and social media, a number of extensions to LDA have been proposed. For example,

Chang et al. [41] proposed a novel probabilistic topic model to analyze text corpora and

infer descriptions of the entities and of relationships between those entities on Wikipedia.

McCallum et al. [141] proposed a model to simultaneously discover groups among the

entities and topics among the corresponding text. Zhang et al. [223] introduced a model

to incorporate LDA into a community detection process. Similar work can be found in

[135] and [147]
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Related to this work, where we need to obtain topic mixture for both messages and

authors, Rosen-Zvi et al. [172] introduced an author-topic model, which can flexibly model

authors and their corresponding topic distributions. In their experiments, they found that

the model outperforms LDA when only small number of words are observed in the test

documents. Ramage et al. [164, 163] extended LDA to a supervised form and studied

its application in micro-blogging environment. Phan et al. [159] studied the problem of

modeling short text through LDA. However, their work mainly focused on how to apply

it to Wikipedia and they did not provide any discussion on if there is other ways to train

a same model.

In web search, this line of research usually employs search engines directly. For exam-

ple, Sahami et al. [174] introduced a kernel function based on search engine results. Yih

et al. [218] further extended the method by exploiting some machine learning techniques.

183



www.manaraa.com

Chapter 8

Topic Modeling: Multiple Text

Streams with Temporal Dynamics

8.1 Introduction

In the previous chapter, we have demonstrated that topic modeling can help content

understanding in online conversational media for several tasks. From this chapter, we

enter the second part of this dissertation, which is to explore how we design specific topic

models to consider a number of important aspects of online conversational media, such as

dynamic temporal data and geographical tagged data.

Social-networking tools such as Facebook, LinkedIn and Twitter, have become the

communication tools of choice for a large number of online users. Such tools are in-

creasingly used for disseminating breaking news and eyewitness accounts, and even for

organizing flash mobs and protest groups. For instance, Twitter was heavily used in a

number of international events, such as the Iran election in 2009, the Haiti earthquakes in

2010, and the tsunami in Japan in 2011. More recently, social networking services were

instrumental in facilitating the political upheavals in the Middle East. Social media as
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well as the on-line publishing of more established media (e.g., newspapers, magazines and

televison) have attracted a lot of attention from both researchers and product developers.

This increasing use of social media has resulted in a refocusing of research activities

onto related problems, many of which are new. For example, there exists an argument

as to whether social media have influenced traditional media sources and in what sense,

or vice versa. In addition, people are wondering whether the topics that are shared and

discussed on social media significantly differ from traditional information sources and how

these topics are transferred from one source to another. Moreover, questions about the

differences between various types of social media (e.g., blogs, community-based questions-

and-answer portals and microblogging services) have been raised continuously both in

research communities and industry. Effectively addressing these issues requires the ability

to analyze multiple types of information sources over time.

Problems similar to these have been attacked from various perspectives. For modeling

the temporal dynamics of information Kleinberg et al. [116, 117] proposed methods to

track the volume of a single term over time. Their later work (e.g., [130]) attempts to

monitor the temporal dynamics of “memes” by which the authors mean sentence frag-

ments representing concepts. In addition work has been done to study the dynamics of

blogs [78], of online knowledge sharing communities [8], of news articles and stories [130],

and of microblog services [104]. While most of the above-mentioned works focused on a

single media source, some authors [222, 198, 199] modified Probabilistic Latent Seman-

tic Analysis (PLSA) [88] to simultaneously model documents from different text streams.

There is also some recent work in comparing social and traditional media. Zhao et al. [226]

tried to obtain latent topics from Twitter and New York Times (NYT) news articles by

using topic models. Two different topic models were used to learn the topics from the two

sources separately and heuristics were then applied to obtain both common and local top-

ics. Attempts have been made to extend topic models to incorporate temporal dynamics
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and topic evolution (e.g., [26, 201]). In addition to research projects, commercial products

also provide tools to search and browse the dynamics of queries1, news articles and web

traffic2, and microblogging updates3.

While existing research offers different methods to monitor and track correlated in-

formation sources over time, many of the proposed approaches suffer from significant

drawbacks. For instance most of the work on tracking information sources primarily fo-

cuses on only one type of source. Given the multiplicity of media channels however, it is

potentially more useful to understand multiple information sources simultaneously. Also,

tracking a single word or a meme can be quite limiting. Further, most models that con-

sider multiple text collections either have model parameters requiring manual adjustment

or have theoretical limitations (see our discussion in Section 8.6). In addition tempo-

ral factors are either not incorporated in the models or are heuristically embedded. For

temporal topic models most approaches adopt a Markovian assumption that may not be

suitable for social media. Indeed, none of them utilize recent research findings of temporal

variations of information in social media [130, 213].

In this chapter we address the problem of modeling multiple text streams, including

their temporal dynamics, in a principled manner. Our work builds on recent work in both

information dynamics and topic models. More specifically, we extend topic models by

allowing each text stream to have both local and shared topics. For temporal modeling,

we associate each topic with a time-dependent function that characterizes its popularity

over time. By combining the two models, we effectively model temporal dynamics of

multiple correlated text streams in a unified framework. To summarize the contributions

of this chapter, the work we describe includes:

• a topic model that discovers common and uncommon topics from multiple text

1http://www.google.com/insights/search/
2http://www.google.com/trends
3http://www.google.com
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collections

• a temporal model that characterizes the dynamic of topics over time

• a simple and potentially scalable algorithm for mining temporal topics

• interesting results from Yahoo! News and Twitter obtained by applying our model.

The remainder of this chapter is organized as follows. Section 8.6 provides the background

and related work. In Section 8.2 and Section 8.3, we discuss our model in detail. Section

8.4 provides experimental results on real-world datasets. We summarize the chapter with

Section 8.5, which discusses both conclusions and future work.

8.2 Correlated Text Streams

8.2.1 Model Description

Our correlated-text-stream model (Collection Model) is an extension of Latent Dirichlet

Allocation [28] (LDA). In our Collection Model, we have a set S of n text streams.

Associated with each stream s ∈ S is a set Ts of local topics and associated with all

streams is a set Tc of common topics. Thus the total number of topics in the model

is (
∑

s |Ts|) + |Tc|. As in LDA, each topic k is defined as a multinomial distribution

over a fixed vocabulary V , denoted as φk. Local topics φ(s) are drawn from stream-

dependent Dirichlet distributions Dir(β(c)) while common topics φ(c) are drawn from a

stream-independent Dirichlet distribution Dir(β(c)). Each document d in a stream s, has

an associated Bernoulli distribution with parameter ηd,s ∼ Beta(γ
(s)
s , γ

(c)
s ), indicating how

likely the document is to choose local rather than common topics. For convenience we

let ηd,c (where ηd,c = 1 − ηd,s) represent how likely a document d is to choose common

topics. The random variable xd,i ∼ Bernoulli(ηd,s) takes on one of the two values “local”

or “common” for each word position i in document d. In addition, each document has two
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multinomial distributions with parameter vectors θ
(s)
d ∼ Dir(αs) and θ

(c)
d ∼ Dir(αc) over

Ts and Tc respectively, where αs and αc represent the two Dirichlet parameter vectors.

The document generation process associated with this model is as follows:

1. For all common topics Tc, draw φ(c) ∼ Dir(β(c))

2. For a particular stream s

(a) For all local topics Ts, draw φ(s) ∼ Dir(β(s))

(b) For each document d in s

i. Draw Bernoulli parameter ηs,d ∼ Beta(γ
(s)
s , γ

(c)
s )

ii. Draw θ
(s)
d ∼ Dir(αs)

iii. Draw θ
(c)
d ∼ Dir(αc)

For each word position i in document d

A. Draw xdi ∼ Bernoulli(ηs,d)

B. Draw a topic zdi ∼ Multinomial(θ
(xdi)
d )

C. Draw a word wdi ∼ Multinomial (φ
(xdi)
zdi )

Under this generation scheme, the probability a term w is generated by a document d is:

p(w|d) = ηd,s

( ∑

z∈Ts

φz,wθ
(s)
d,z

)
+(1− ηd,s)

(∑

z∈Tc

φz,wθ
(c)
d,z

)
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8.2.2 Inference via Collapsed Gibbs Sampling

In order to estimate the hidden parameters in the model, we apply collapsed Gibbs sam-

pling using the following updating rules:

p(xdi = s, zdi = t) ∝

cd,s−i + γ
(s)
s

Nd + γ
(s)
s + γ

(c)
s − 1

md,z−i + αz∑
z∈Ts

md,z−i + αz

nz,w−i + β
(s)
w

∑V
w nz,w−i + β

(s)
w

p(xdi = c, zdi = t) ∝

cd,c−i + γ
(c)
s

Nd + γ
(s)
s + γ

(c)
s − 1

md,z−i + αz∑
z∈Tc

md,z−i + αz

nz,w−i + β
(c)
w

∑V
w nz,w−i + β

(c)
w

(8.1)

where cd,s−i is the number of words in document d assigned to local topics (excluding wdi),

md,z−i is the number of words in document d assigned to topic z (excluding the current

one) and nz,w−i is the number of occurrences of term w assigned to topic z (excluding the

current one). By using the samples from Gibbs sampling, parameters {θ(s)d , θ
(c)
d }, {φs, φc}

and {ηd,s, ηd,c} can be effectively estimated as follows:

θ
(x)
d,z =

md,z + αz∑
z∈Tx

md,z + αz
, x ∈ {s, c} (8.2)

φ(x)z,w =
nz,w + βw∑

z∈Tx
nz,w + βw

, x ∈ {s, c} (8.3)

ηd,x =
cd,x + γ

(x)
s

Nd + γ
(s)
s + γ

(c)
s

, x ∈ {s, c} (8.4)

The formalism of our model resembles in spirit that of Chemudugunta et al. [43] where

each term is “split” into corpus-level “background” topics, document-level “special” topics

and normal topics. However, their work is only for a single corpus while our model fits

multiple collections. Hyper-parameters like β, α and γ can be estimated using standard

methods introduced by Minka [144].
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Figure 8.1: The total volume of Twitter and Yahoo! News

8.3 Modeling Temporal Dynamics

8.3.1 Temporal Dynamics for Topics

In this section we review a temporal model for news articles, introduced in [130] and

present an alternate derivation. Before proceeding however, it bears pointing out that, as

stated in [130], “rigorous analysis of the proposed model appears to be quite complex.”

The referred-to model embodies two driving forces for news-article publishing which the

authors refer to as imitation and recency. The authors assert that this pair constitutes

a minimum set for the purpose of explaining the temporal dynamics n(t) of news-article

publishing, but that the real situation is undoubtedly more complicated. We agree that

there are factors beyond just these two. For example consider the Twitter and Yahoo!

News total-volume data plotted in Figure 8.1 as functions of time over the first 120 hours

(GMT) of May 2010. Note the enormous surge in the volume of news articles beginning

after the Kentucky Derby4, the premier American thoroughbred-horse race, and continuing

for several hours. This clearly demonstrates significant elasticity in the volume capacity

of the various sources contributing to Yahoo! News.

We start by assuming the following setting, which is a response that looks like a

4http://en.wikipedia.org/wiki/Kentucky_Derby
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proportional controller5 except that the “control point” nmax is not a constant.

dn

dt
= λ [nmax − n(t) ], (8.5)

where nmax is a function of both t and n. The form (8.5) captures the saturation effect

mentioned above. The saturation value nmax varies with both n and t, however. We

assume that it is the product of a term (ζn(t)) embodying the imitation effect mentioned

above and a term (νt−1) embodying the recency effect, where ζ and ν are adjustable

parameters. Substituting the resulting expression for nmax into (8.5), we obtain:

dn

dt
= λn(t) [ ζνt−1 − 1 ] (8.6)

Next we solve this differential equation, assuming that the event occurs at t = 0 for

convenience. For an event occurring at time t0 let t → t − t0. We must also ensure that

our solution satisfies the following boundary conditions.

1. n(t) = 0 for t ≤ 0.

2. n(t) ≥ 0 for t > 0.

3. n(t) → 0 as t→ ∞.

5See http://en.wikipedia.org/wiki/Proportional_control .
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The solution of (8.6) proceeds in the following steps.

1

n

dn

dt
= λ [ ζνt−1 − 1 ],

∫ t

1

1

n

dn

dt
dt = λζν

∫ t

1
t−1 dt − λ

∫ t

1
dt,

lnn(t) = lnn(t = 1) + λζν ln t − λt + λ,

lnn(t) = lnA + q ln t − λt,

n(t) = Atq e−λt, (8.7)

where A := n(t = 1) eλ and q := λζν. Next we apply our boundary conditions to the

solution given in (8.7). First, to enforce condition 1 we multiply the solution of (8.7) by

the Heaviside unit step function u(t), which equals 0 for t < 0 and 1 for t > 0. Thus, we

have

n(t) = u(t)Atq e−λt. (8.8)

Condition 2 requires that A > 0 and Condition 3 requires that λ > 0. The form of (8.8)

has been demonstrated to capture spikes of news articles and social-media blogs [130, 213].

8.3.2 Incorporating Temporal Dynamics

In this section we describe how to incorporate the temporal model described above

into our Collection Model and then introduce the inference approach to estimate the

parameters in the model. We assume that the temporal dynamics of each topic are inde-

pendent of each other. In other words, the popularity of one topic does not affect that

of the other topics. We realize that this is a simplified assumption. The basic intuition

behind embeding temporal dynamics into the model is to allow certain topics to have a

higher probability of being selected. For example, during the Soccer World Cup in June

and July of 2010, news articles and Twitter messages may naturally be more likely to
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Figure 8.2: Overall Algorithm

Initialize Gibbs Sampler
while Not Converging do

E-step
For all documents in all text streams, update topic assignments using (8.1)
M-step
Update α, β and γ values through the method introduced in [144]
for Each local and common topic do

1) Fit gaussian function to α values
2) Fit “temporal gamma” function by using the parameters from the previous step

3) Re-calculate α values for topic k by using fitted function
end for

end while

talk about the World Cup, rather than politics. We encode this notion by associating

the Dirichlet parameters for each topic with a time-dependent function. This function

governs the variation of those parameters and thus indirectly controls the popularity of

the associated topics. More specifically, for all common topics (with parameters αc) and

local topics (with parameters αs), we let each dimension αk in Dirichlet parameters α to

be associated with the following time-dependent function.

αk(t) = fk(t) = Akt
qke−λkt

where fk(t) is the temporal model described in Section 8.3.1. However, if we näıvely

associate αk with fk, the model may face difficult problems since the temporal model

unrealistically assumes that the starting point of the time t for all topics is time stamp 0.

In other words, different topics should have different starting times t0. Thus, we modify

it into the following form:

fk(t) = Ck + u(t− tk0)(Ak|t− tk0|qk exp(−λk|t− tk0 |)) (8.9)
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where t0 is the starting time stamp of the topic, Ak controls the height of the prior

knowledge, qk indicates how quickly the topic would rise to the peak, λk controls the rate

of decay and Ck is the “noise” level of the topic. We refer to the right hand side of (8.9)

as the “temporal gamma function”.

The absolute-value function guarantees that the time-dependent part is only active

when t is larger than t0. Additionally, u(t− t0) is a step function that is 1 for t ≥ t0 and

0 otherwise. In our implementation, a “soft” version of the step function as u(t− t
(k)
0 ) =

1/(1 + exp(−(t− t
(k)
0 )) is used. Intuitively, this equation states that the prior knowledge

of each topic is fixed over time (by the “noise” level Ck) until a starting point t0 and from

that point on it follows a temporal gamma function controlled by three parameters, Ak,

qk and λk. The crux of the problem is to estimate the values of these five parameters

from the data. Note that a similar model which uses a Gaussian function to model prior

knowledge was proposed in [140].

The absolute-value function and the parameter t0 in (8.9) present challenges to model

fitting (parameter estimation). To address this, rather than directly fitting fk(t), we use

the following heuristic similar to that used in [140]. We first fit the following Gaussian

function:

αk(t) ≈ gk(t) = C
′

k +A
′

k exp(−(t− µk)
2/2σ2k), (8.10)

where µk is the mean and σ2k is the variance. The resulting parameter values are then used

to obtain initial parameter values for fitting the temporal gamma function of (8.9). This

Gaussian function is straightforward to fit and its symmetric form allows us to obtain

t0 easily. We set the initial values of Ck and Ak in (8.9) to those obtained by fitting

the Gaussian function and we fix t
(k)
0 = µk − σk. This process simplifies our inference

algorithm. Note that the Gaussian approximation is only used to find initial values of the
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parameters including t0. In our later experiments we find that this approximation gives

reasonable initial values.

The outline of our inference algorithm is shown in Figure 8.2. Overall, we incorporate

the functional optimization problem with Gibbs sampling into a stochastic EM framework

(e.g., similar to [61]). In the E-step we gather topic assignments and useful counts by Gibbs

sampling through (8.1). In the M-step we optimize the proposed objective functions to

obtain the updated hyper-parameters for the next iteration. More specifically, the first

step is to estimate the Dirichlet parameters α from counts obtained from Gibbs Sampling.

This can be done in several ways [144]. We use Newton’s method in this step. The

second step is to use these α values to fit the Gaussian function (8.10) and then, using the

parameters from the fitted Gaussian function as initial values, to fit our temporal gamma

function (8.9). For both problems we minimize the following objective functions:

argmin
gk

Gk =
1

2

∑

t

(
αk(t)− gk(t)

)2
(8.11)

argmin
fk

Fk =
1

2

∑

t

(
αk(t)− fk(t)

)2
(8.12)

We use the L-BFGS algorithm[136] implemented in GNU/GSL Library[73], which only re-

quires the first-order gradients to obtain the optimal values for the parameters in both func-

tions. Note that the method proposed here is potentially scalable to very large datasets.

For example LDA-style Gibbs sampling has been scaled to very large dataset sizes by [150],

which is particularly useful for our E-step. For our M-step a stochastic gradient descent

can be used instead of the usual Newton’s method. We denote the whole algorithm as the

Temporal Collection model.
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Table 8.1: Example Topics from Our Dataset

Comparison of Top Ranked Common Topics between LDA (Top) and Temporal Collection (Bottom)

Title Top Terms

“finance” percent billion bank market greece financial banks debt
“crime” police car times vehicle found york square street bomb
“junk” link cont via #jobs #fb album super live wii #tcot #news
“oil spill’ oil gulf spill coast mexico gas drilling sea water
“junk” dont people cant thats youre bad look tell talk
Title Top Terms

“finance” percent billion bank greece financial debt banks euro crisis
“oil spill” oil gulf spill coast drilling mexico water louisiana
“world cup” world cup team league final players south season club
“health care” health medical care cancer hospital patients study research
“UK election” minister party prime cameron political leader president

Comparison of Local Topics between News (Top) and Twitter (Bottom)

Title Top Terms

“crime” police car times vehicle found york square street
“US election” election party law president vote political campaign
“China” minister china south india north chinese korea indian
“jobs” budget tax million money pay bill federal increase cuts
“education” school students schools board education district college
Title Top Terms

“social media” blog video post check news via twitter online facebook
“hash tags” #fb info #quote #fail #ge #lol #ff #twibbon cont
“non-English” les pas pour sur une cest est qui avec bien suis tout faire
“junk” cant this wait watch next believe gonna watching just
“junk” that would have could never were wish there

8.4 Evaluation

We utilize a real-world dataset consisting of Yahoo! News and Twitter messages from

May 2010 to evaluate our method. Since the original dataset is quite large, we sample

news articles and Tweets proportional to the total volume of each hour in May, resulting in

233,488 news articles and 1,736,350 Twitter messages in total. We use each hour as a time

unit, which starts from 0, the first hour of May 1, 2010 to 720, the last hour of May 30, 2010.

All the experiments are based on this dataset. The models used are (1) Latent Dirichlet

Allocation (LDA), (2) Correlated Stream Model (Collection), introduced in Section 8.2,

(3) Temporal Dynamics Topic Model (Temporal), introduced in Section 8.3.2 but ignoring

multiple collection effects, and (4) Correlated Collection Model with Temporal Dynamics

(Temporal Collection), introduced in Section 8.3.2. For Collection and Temporal
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Figure 8.3: Perplexity Comparison Between Multiple Models

Collection, we set the number of common topics to 20 ∼ 50 (depending on the total

number of topics) and equally divide the remaining topics into all other streams, as local

topics. We do not compare with other similar methods because Collection and Temporal

Collection can essentially represent the two major directions of previous work discussed

in Section 8.6.

8.4.1 Perplexity Evaluation

Following common practice for comparing topic models, we use perplexity of the held-out

test data as our goodness-of-fit measure. Perplexity is defined as

exp
(
−
∑D

d=1

∑Nd

i=1 log p(wd,i|M)
∑D

d=1Nd

)

where wd,i represents the i
th term in document d, M is the model and Nd is the number of

words in document d. First, we randomly sample 80% of the data as the training data and

use the remaining 20% as the test data. Although this is a common evaluation procedure

for topic models, it may not reflect real-world scenarios for temporal text collections

because it may give additional undesirable advantages to models knowing the “future.”

All models are trained on the same training set and evaluated using the same test set.
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In the training phase we obtain topic distributions φ and all other hyper-parameters.

In the testing phase we fix them and perform 100 Gibbs-sampling iterations for each

document in the test set, obtaining θd. Using these newly estimated θd, we calculate

p(wd,i|M) =
∑K

z φk,wθd,k and then compute perplexity. The result is shown on the left-

hand side in Figure 8.3 where the left-hand plot shows a random 80%/20% train/test split

while the right-hand plotshows a past/future 20-days/10-days train/test split. The second

setting we choose is closer to real-world scenarios. We train all models on the first 20 days

in May and test the perplexity on the remaining 10 days, shown on the right-hand side in

Figure 8.3. As is evident in the figure, the perplexity exhibits a minimum with respect to

the number of topics in both settings. As the number of topics is increased beyond that

minimum, overfitting appears to set in, as was also observed in [79]. For both settings

Temporal Collection significantly outperforms the others.

8.4.2 Common Topics and Local Topics

Here we manually compare the topics obtained by Temporal Collection and by LDA to

determine which topics are meaningful and to see if any interesting patterns are discovered

by the model. As we described previously, the advantage of Temporal Collection is to

identify common topics among multiple text collections in a principled manner. Since

LDA does not provide any mechanism for retrieving common topics explicitly, we use the

following heuristic ranking method to indicate the prevalence of a topic T on both News

and Twitter:

1

2

[ n(zT ,News)∑
T ′ n(zT ′ ,News)

+
n(zT ,Twitter)∑
T ′ n(zT ′ ,Twitter)

]

where n(zT ,News) is the number of tokens assigned to topic T in News and n(zT ,Twitter)

is the number of tokens assigned to the same topic in Twitter. Basically, this simple

198



www.manaraa.com

heuristic measures how likely a topic is to be assigned to a token in both News and

Twitter on average. The higher this value is, the more likely this topic will appear, on

average. We rank all the topics obtained by LDA through this method and show the top

5 on the left top part of Table 8.1. For Temporal Collection, since common topics are

identified automatically, we just need to rank all common topics and extract the top ones,

by the following criterion: 1
2

(
E[θNewsi ] + E[θTwitteri ]

)
where E[θNewsi ] is the expected

value of θi for common topic ti on news and similarly for Twitter. This equation can

be interpreted as the average of the expected value of topic k appearing in a document

on both collections. The quantity E[θi] can be easily computed by αi∑
k αk

and normalized

across all time epochs. The top 5 common topics are listed on the right top part of the

same table.

The first column and the third column of the Table 8.1 show the title of the topics,

a label given by the authors for easier interpretation. All topics (the second and the

fourth column) are represented by the top ranked terms by φz,w. Note that all these

models are fit in an unsupervised manner in which no explicit human labels are available

beforehand. From the results it is clear that both methods rank some potential common

topics highly, such as “Oil Spill” and “Financial Crisis”. However, it is also noticeable

that simple ranking heuristics may not give appropriate scores to the topics. For instance

the ranking scheme may prefer the topics from a collection that is significantly larger than

the other, even if a topic only appears in one collection. For example, the two “junk”

topics shown on the left are examples of this situation. In addition, if two topics are

common to both data collections but one is popular among a lot of short documents (e.g.,

Twitter messages) and the other is prevalent in a relative small number of long documents

(e.g., news articles), some sort of normalization schemes is clearly needed. Although there

exist some sophisticated ranking heuristics [11], we argue that our model can handle these

issues in a more principled way by modeling common topics explicitly. For instance the α
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values for common topics can shed light on how popular these topics are, either in one of

the data collections or in all of them.

Since similar ranking heuristics do not work well for LDA to provide local topics for

Twitter and news, we only report the local topics found by our method, shown in the lower

part of Table 8.1. On the left-hand side top ranked local topics on news are presented while

on the right hand side top local topics found on Twitter are shown. Interesting observations

can be made based upon these results. First, news articles tend to have more “formal”

topics, such as politics, education and economy, whereas a large fraction of the Twitter

stream consists of personal chat and opinions. Therefore, besides the common topics (e.g.,

Table 8.1) in both news and Twitter, local topics for Twitter seem less understandable

and coherent. Indeed, throughout several experiments conducted on May’s data and on

other months as well, we observe that most of the local topics on Twitter are not very

interesting. On the other hand, based on our experiments, some local topics (e.g “Crime”)

are on news but seldom picked up on Twitter. Many different kinds of criminal incidents

are reported on a variety of news sources but not many of them really trigger interest on

Twitter. Note that we understand that these results are preliminary and more thorough

experiments are required. Nevertheless, our method provides a tool to investigate these

interesting phenomena which are difficult or were impossible to be examined before [226].

8.4.3 Case Study on A Common Topic

Besides finding common and local topics on news and Twitter, our model also provides

information about the temporal dynamics of these topics. Here we take a topic related to

“Kentucky Derby” as an example to show the usefulness of our method. The Kentucky

Derby6 is the premier annual American horse race and has a significant international

following. In 2010 it took place on May 1st. We try to identify the topics related to this

6http://en.wikipedia.org/wiki/Kentucky Derby
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event from the results obtained by our model. Remember that topics are only distributions

over words. In order to find potential topics, we check the ranking positions of a list of

terms which are known to be related to the event (e.g., “horse”, “race”, “kentucky”,

“derby”). If these terms are ranked highly in a particular topic, we consider that topic

to be about the Kentucky Derby. We list the top 5 ranked terms of the topic we found

by this simple heuristic just described: “derby”, “race”, “borel”, “kentucky” and “horse”.

The topic we matched is a common topic and therefore it has the same distribution over

words for both News and Twitter, meaning that once an article in News or a message in

Twitter refers to this topic, the same word distribution is used to generate words, which is

guaranteed by the model. However, the difference between News and Twitter on how this

topic would be selected in a document is controlled by a stream-specific prior ∼ Dir(α
(c)
t )

and further governed by a stream-dependent temporal gamma function.

In order to show the time series of the topic on news and Twitter, we transform the

counts into a valid distribution by calculating a p(t|z) = p(z|t)p(t)∑
t′ p(z|t′)p(t′)

where t is a time

epoch. Then, p(z|t) is estimated by the number of tokens assigned to topic z in time

epoch t divided by the total number of tokens in time epoch t and p(t) is estimated by

the total number of tokens in time t divided by the overall number of tokens across all

time epochs. Basically, the probability p(t|z) tells us how likely the topic would appear in

time epoch t. The results are shown in Figure 8.4 where the X-axis is the hours in May,

2010. Y-axis is p(t|z). We first show the topic on the whole timeline (720 hours in May)

on the top and show the first 120 hours at the bottom of the figure. The first observation

is that the topic has two major peaks on both news and Twitter, shown in the upper part.

This may reflect that “Kentucky Derby” is indeed a popular sports event. From the first

120-hour view of the topic, it is interesting to see that the topic first exhibited a peak

on News and exhibited another peak on Twitter several hours later. This is a concrete

example demonstrating the potential usage of our model to analyze common topics on
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Figure 8.4: Temporal dynamics of “Kentucky Derby” on News and Twitter.

multiple text streams in the timeline. A similar kind of analysis is conducted in [226]

using sophisticated heuristics to find common topics and to view the timelines of topics.

8.4.4 Case Study on Hashtags

Hashtags, a type of community convention7 which starts with a “#” sign, have been heavily

used as annotations to represent events and topics on Twitter. We select several hashtags

that can act as indicators for certain events where each hashtag is clearly associated to

some events in May, 2010. More specifically, we choose #mothersday for “Mothers Day”,

#memorialday for “Memorial Day”, #bp for “Oil Spill”,#kentuckyderby for “Kentucky

Derby”, #gaga for “Lady Gaga” and #justinbieber for “Justin Bieber”. We wish to see

whether these events can be discovered by different models and how well these topics can be

presented. We believe these hashtags represent a large range of social events and therefore

are representative. In order to make a fair comparison, we transform the volume of these

hashtags over time into distributions by using a technique similar to those introduced

above. The first question we want to ask is whether the models can identify topics that

reflect the events behind these hashtags. We map hashtags onto the topics obtained by

the models and top ranked terms in these topics are examined to see whether these terms

7http://twitter.pbworks.com/Hashtags
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Table 8.2: Hashtag-to-Topic Mappings

Hashtag Top Terms of Mapped Topic

[a] Hashtag Mapping for LDA model
#mothersday family home life children mother son friends
#memorialday event june call center community club park
#bp oil gulf spill coast mexico gas drilling
#kentuckyderby race car track kentucky win top cars
#gaga & #justinbieber justin lady super try bieber ider rio gaga jonas

[b] Hashtag Mapping for Temporal Collection model
#mothersday family children day home life church mother
#memorialday memorial event day june community center
#bp oil gulf spill coast drilling mexico water louisiana
#kentuckyderby derby race borel kentucky horse super
#gaga & #justinbieber bieber music video song gaga album lady

[c] KL Divergence between Hashtags and Matched Topics
Hashtag LDA vs. Temporal Collection

#mothersday 1.1911 / 0.7714
#memorialday 1.4331 / 0.9365
#bp 0.3958 / 0.1577
#kentuckyderby 1.9924 / 0.8183
#gaga & #justinbieber 2.2391 / 1.1754

have any relationships with the underlying events. To map the hashtags, we calculate the

following probability p(z|w) = p(w|z)p(z)∑
z′ p(w|z′)p(z′) where p(w|z) is exactly φz,w, provided by the

trained models and p(z) can be easily estimated by the counts. Intuitively, this probability

tells us how likely a topic is to be selected, given the term. For the Temporal Collection

model, all topics (including common topics and local topics) are treated as candidates

to be matched. We map hashtags to topics for both LDA and our model, shown in the

upper part of Table 8.2. Both models map #gaga and #justinbieber together onto a single

topic, indicating that topics obtained by these models do not strictly correspond to real

world events. Although some top ranked terms are similar for both models, the results

from the Temporal Collection model are arguably better, in terms of interpretation

of these terms. For instance, the Temporal Collection model explicitly ranks terms

“memorial” and “day” highly in the list, implying this topic has much closer relationship

with “Memorial Day”, while LDA only has terms with broader connections with this kind

of event. Similarly, the Temporal Collection model ranks more specific terms highly for
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‘Kentucky Derby” (e.g., “borel”, “horse”, “pletcher”) while the topic obtained by LDA is

essentially related to many races including “car races” and “horse races”.

We can also compare the time-series of topics and hashtags to determine whether they

are similar. The assumption is that, if they behave similarly on the timeline, the topics

might be good choices for explaining the underlying events. Note that we are not seeking

the exact match here since the topics have many more terms rather than a single hashtag

and it may explain multiple events. Again, we transform the volumes into probabilities.

We plot the time series of selected hashtags and the time series of selected topics in

the same plots, shown in Figure 8.5 where X-axis is the hour number and Y-axis is the

probability. For each hashtag we compare its time series, obtained using LDA, with those

obtained from our model. Although top ranked terms may look similar, the time series of

these topics behave significantly differently. For LDA, because of the fixed Dirichlet hyper-

parameter α over time, the models may give inappropriate “pseudo counts” for certain

topics in the timeline. Indeed, one property of Dirichlet distribution can shed some lights

on the observation: E[θk] =
αk∑
k′ αk′

where the expected value of θk, the proportion of topic

k represented in a document, is the ratio of the Dirichlet parameter αk over the sum of

all α values. Since α values are fixed over time, this expected value will also be constant

over time, leading to the fact that the topic assignments fluctuate around a certain value,

though with variance, which is exactly shown in our experiments. This drawback of LDA

may lead to difficulty in identifying the peaks of these topics. On the other hand, in our

model, since the hyper-parameters α are controlled by the temporal gamma functions, the

rise and fall of these values may give good hints for the model to assign topics to words,

yielding better modeling temporal dynamics. Also, from the results, our models can better

match the peaks of hashtags, indicating that the method can better reflect real events.

We can further compare these time series quantitatively. Since these time series are

valid distributions over time, KL divergence is employed to measure their “distance” as
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Figure 8.5: The distributions p(t|z) of mapped topics in May.
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Table 8.3: Evaluation on Retrieval Performance

Method MAP

TF-IDF 0.673

TF-IDF + Plain LDA 0.685

TF-IDF + Collection 0.703

TF-IDF + Temporal Collection 0.732

follows:
∑

t p(t|w1) log
p(t|w1)
p(t|w2)

. KL divergence is non-negative and the smaller the value is,

the more similar two distributions are. We calculate the KL divergence between hashtag

time series and topic time series for both LDA and our model. The results are shown in

the bottom part of Table 8.2. From the results it is obvious that the time series of topics

obtained by the Temporal Collection model better match the corresponding hashtag

time series, yielding lower KL divergence scores. This also validates the visual evidence

from Figure 8.5.

8.4.5 Performance on Retrieval

As a further demonstration of the utility and effectiveness of our model, we apply it in a

toy application that uses it as part of an information-retrieval relevance measure. For a

query q and document d, the idea is to use the probability p(q|d) that q was generated by

d’s generating model as a measure of the relevance of d to q. In a scheme similar to that

used in [204] we use a relevance measure S(d|q) that is a linear combination of p(q|d) and

a simple TF-IDF-based cosine-similarity score τ(d, q). That is

S(d|q) = λ τ(d, q) + (1− λ) p(q|d). (8.13)

For our experiment we select the top 20 queries from GoogleInsights in the time period of

May 2010, corresponding to our datasets. To select retrieval candidates we compute τ(d, q)

for all tweet-query pairs (d, q) and use these scores to rank the tweets for all queries. We
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then select the top 50 tweets from that ranking for each query. These tweets and queries

are then submitted to Amazon Mechanical Turk for manual relevance judgements, which

we use as ground truth. These judgements are assigned using a three-level scale consisting

of “relevant”, “neutral” and “non-relevant.” For each pair (d, q) three judges are assigned

to assess the relevance and only the pairs on which at least two workers agree are kept,

leaving a total of 922 tweets.

Mean Average Precision (MAP) for the top 20 positions is used for retrieval-accuracy

characterization. These top-20 MAP scores are computed for each of four combinations of

the TF-IDF measure τ(d, q) and a topic model. For each combination the parameter λ of

(8.13) is varried over the range [0, 1] and the optimal (highest MAP) value is determined.

The corresponding MAP values are shown in Table 8.3. From these results we see that the

choice of topic model used affects retrieval accuracy, with the highest retrieval accuracy

being associated with the combination of TF-IDF and Temporal Collection scores.

8.5 Summary

Modeling the temporal dynamics of topics is still a challenge, especially on multiple data

collections. In this chapter we propose a model for use in automatically analyzing multiple

correlated text streams with their temporal behavior in a principled way. Our method

bridges the recent advances in topic-modeling and information cascading in social media.

We extend topic models by allowing each text stream to have local topics and shared topics,

overcoming several theoretical problems of previously proposed models for similar prob-

lems. For temporal modeling we associate each topic with a time-dependent function that

characterizes its popularity over time. By combining the two models, we can effectively

model the temporal dynamics of multiple correlated text streams in a unified framework.

Compared to related work our method is easy to implement and can potentially scale to
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large datasets. Additionally our method provides a new tool for browsing and mining a

variety of types of social media simultaneously. For future work it will be interesting to

utilize Bayesian non-parametric techniques to automatically learn the number of topics

from the dataset. This is especially valuable for our model where the number of common

topics and local topics must be manually assigned in current settings. In addition in order

to better reflect real events, topics can be linked with named entities such that each topic

is forced to contain a certain number of entities. It is also interesting to see hierarchical

modeling of topics with temporal dynamics, which permits users to “zoom in” and “zoom

out” on large topics (e.g. “oil spill”) and track their evolution over time.

8.6 Bibliographic Notes

Mining common topics and their temporal dynamics from multiple text streams can be

loosely decomposed into the two independent tasks of (1) recovering topics and (2) char-

acterizing their temporal dynamics. We review these two lines of related work.

Based on PLSA, Wang et al. [198] introduced an observed-time-stamp variable into the

generative model to incorporate temporal dynamics. In addition several heuristics were

applied to smooth topics in consecutive time periods. Later, Wang et al. [199] followed

a similar idea and used an artificial time-synchronization optimization process in their

model to re-organize the time stamps of all documents so that documents with the same

time stamp would share similar topics. We argue that the constraint imposed by this

synchronization is unrealistic. Note that these two s do not differentiate between common

topics and topics that only occur in a single text stream. Moreover, since both models are

based on PLSA, they have the tendency to overfit the data. Furthermore, both models

are not well-defined generative models [28] and no assumptions on how topic distributions

and per-document topic-proportion distributions change over time were made in these
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models. In a recent paper, Zhang et al. [224], in addressing the same problem, proposed a

non-parametric model in which a Markovian assumption is made regarding the temporal

dynamics of document-topic distributions. As mentioned in the previous section, however,

according to recent results on information propagation and temporal variations [130, 213],

this assumption may not be appropriate for social media.

Independent of temporal factors, two basic approaches to topic discovery from corre-

lated text streams exist in the topic modeling literature. Zhai et al. [222] proposed two

variants of the same idea to tackle the problem of modeling multiple text streams. One

variant assumes that each document in a text stream is generated by a background lan-

guage model and a set of topics. Both the background language model and topics are

multinomial distributions over words shared across multiple text streams. Since they are

shared across all streams, common topics are difficult to identify. The second variant

also assumes that each document in a text stream is generated by a background language

model and a set of topics. Once a term is chosen to be generated by topics, a topic index is

first selected followed by a second-level decision regarding whether the word is generated

by a common or a local topic. The model can then explicitly handle common and local

topics among multiple streams. Common and local topics are aligned under the same

set of indices however, forcing the total number of topics to be the same for all streams.

In addition the background language is the same across all text streams, which is too

inflexible for the joint modeling of disparate sources such as Twitter and Yahoo! News.

Also, per-document topic-proportion parameters must be manually tuned in experiments,

which is impractical for real applications. The first variant inspired models introduced in

[198, 199] and the second variant was extended to a fully Bayesian formulation by Paul

et al. [154, 155], in which the topic proportion parameters were automatically estimated

from the inference algorithm but local topics among different text streams were forcibly

put under the same set of indices. It is therefore possible that unrelated topics will be
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brought together under the same topic index due to this constraint.

We briefly review some of the recent extensive work on modeling temporal dynamics in

topic models. Early work on incorporating temporal evolution usually made a Markovian

assumption by using either a state-space model (e.g., [26, 196]) or a linear model (e.g.,

[161]). Besides the Markovian assumption, Wang et al. [201] introduced a beta distribution

over timestamps using a non-Markovian topic model. Nallapati et al. [148] and Iwata et

al. [103] focused on the problem of modeling topics spread on a timeline with multiple

resolutions, namely how topics are organized in a hierarchy and how they evolve over time.

Ahmed and Xing [6] proposed a non-parametric model to address the birth and death of

topics over a timeline using a Markovian assumption. The datasets used in these papers

are several orders of magnitude smaller than the one we used in this chapter.
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Chapter 9

Topic Modeling: Temporal

Modeling by Tracking Trends

Text corpora with documents covering a long time-span are natural and ubiquitous in

many application fields, and include such data as research papers and newspaper articles.

Mining from these collections, discovering and understanding underlying topics and ideas,

continues to be an important task. In addition to traditional text collections, many

types of content in social media make applying machine learning techniques to these new

data sources more challenging, such as forums, question answering communities and blog

entries. People not only would like to know what kind of topics can be found from these

data sources but also wish to understand the temporal dynamics of these topics, and

hopefully predict certain properties of terms or documents in the future.

Topic models like [28]), as a class of newly developed machine learning tools, have

been studied extensively in recent years. From the seminal work done by Blei et al. [28],

a large body of literature about topic models has been established. Multiple disciplines of

computer science, ranging from information retrieval (e.g., [204]), computer vision (e.g.,

[200]) to collaborative filtering (e.g., [2]) have applied topic models to their problems. For
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text modeling, topic models are applied to find latent topics from text collections, which

is particularly useful for temporal text corpora where discovered latent topics can help

researchers visualize and understand the thematic evolution of the corpora over time. This

has led to the recent development of incorporating temporal dynamics into topic models

(e.g., [143, 26, 201, 142, 148, 198, 196, 140, 199, 224, 6, 103, 111]). These models enable us

to browse and explore datasets with temporal changes in a convenient way and open future

directions for utilizing these models in a more comprehensive fashion. One drawback of

these existing models is that most of them are general purpose models with which no real

tasks are explicitly associated. Therefore, it might be difficult to employ these models in

real-world applications, such as the problems of tracking trends and predicting popularity

of keywords. As a result of the lack of a particular task, there is also no consensus on

how these models should be evaluated and compared. Although perplexity is widely used

in these papers, as pointed out in [31], this measure may not have correlations with the

quality (e.g., coherence) of topics discovered. Furthermore, no empirical or theoretical

work has been done as far as we know to show the the correlations between the low

perplexity values and high performance in third-party tasks such classification, regression

and clustering. In this chpater, we argue that temporal topic models should be evaluated

on specific real-world tasks and propose such a task to compare how they can contribute

to applications. Some recent extensions of topic models (e.g., [27, 126, 229, 164]) have

tried to incorporate side information, such as document-level labels and word-level features

(e.g., [158]) into models in order to perform classification and regression tasks. A basic

conclusion made from these attempts is that these special-purposed models, aiming to

optimize particular tasks, perform better than general-purpose models, on the tasks they

evaluated. We share a similar spirit in this chapter, showing that temporal topic models

for special tasks perform better than general-purpose models.

In this chapter, we introduce a real-world task — tracking trends of terms — to which
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temporal topic models can be applied. Rather than building a general-purpose model, we

propose a new type of topic model incorporating the volume of terms into the temporal

dynamics of topics and directly optimize for the task. Unlike existing models in which

trends are either latent variables or not considered at all and thus are difficult to apply

in practice, we combine state-space models with term volumes in a supervised learning

fashion which enables us to effectively predict volumes in the future, even without new

documents. In addition, it is straightforward to obtain the volumes of latent topics as a

by-product of our model, demonstrating the superiority of utilizing temporal topic models

over traditional time-series tools (e.g., autoregressive models) to tackle this kind of prob-

lem. The proposed model can be further extended with arbitrary word-level features which

are evolving over time. We present the results of applying the model to two datasets with

long time periods and show its effectiveness over non-trivial baselines. Our contributions

are threefold:

• Introduce a task — volume tracking — that can be used as a standard evaluation

method for temporal topic models

• Propose a temporal topic model that directly optimizes the task introduced

• Demonstrate the effectiveness of the model as compared to state-of-the-art algo-

rithms by experimenting on two real-world datasets

We organize the chapter as follows. In Section 9.6, we review some related developments

of topic models and existing evaluation methods for temporal topic models. In Section

9.1, we introduce the task of volume tracking, as a case of trend monitoring, and propose

our model . In Section 9.2, we show how to utilize variational inference with Kalman

Filter to estimate hidden parameters of the model. In Section 9.3, we discuss some other

models that can be used in the volume tracking task. In Section 9.4, we demonstrate the

experimental results on two datasets and conclude the chapter in Section 9.5.
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Figure 9.1: A graphical representation of the model.

9.1 Tracking trends by incorporating volumes

In this section, we will introduce the task of volume prediction as a case of trend tracking.

One reason that temporal topic models are favored is perhaps that these models can be

potentially used as a tool to analyze trends and changes of keywords over time. However,

these tasks are never evaluated directly or seriously in current literature.

The task of predicting the volume of terms is to predict the numeric volume of one

or a set of keywords, given the historical data of these keywords in the past. This is a

natural extension of tracking and monitoring keywords over time. Indeed, some commer-

cial products provide such tools to allow users to browse and understand the rise and

fall of keywords, such as Google Trends. One drawback of existing tools is that people

usually only have a limited view of certain topics in which they are interested before they
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fully understand these topics. For instance, for the event of “World Cup”, the phrase

“World Cup” is certainly of interest. However, there are many more related terms to be

explored, such as “FIFA”, “South Africa” and “Ronaldo”. Sometimes, users have these

related terms in mind but usually they are unable to prepare them in advance. It would

be great if users could track the trends (volume) of a topic as a whole and discover all

those related terms at the same time. Moreover, the volume of terms in the same topic

are correlated, which may help the model to find better topics. Overall, we would like to

achieve three goals in tracking trends:

• Track and predict the volume of individual terms

• Obtain latent topics so that related terms can be grouped together

• Model the evolution of latent topics

The second goal will happen automatically through the modeling of topic models. The

last goal can be achieved by temporal topic models, through either one of the assumptions

mentioned in Section 9.6. The first goal is the center of this work. We believe that

our work would help to track the volume of topics as a whole if the first goal can be

achieved. Note, in terms of “prediction”, we indicate the ability to estimate the volume of

individual terms in the future where no documents are realized. Two design issues need

to be tackled when introducing term volumes into the model. First, they are word-level

variables (if we treat features as random variables). Second, we need to predict values of

these variables without documents. These two issues prevent these variables from being

placed in the document plates, in terms of graphical modeling. This decision distinguishes

our model from previous models (e.g., [27, 126, 229, 164]) where response variables are

placed in document plates. Recently, Petterson et al. [158] demonstrate a technique to

embed word-level features into topic models. Although our work shares similar ideas to

theirs, their model is not a generative model for word features but only for words in the
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documents. In addition, their work is not to predict these word-level features. Since

their work is for a static text corpus, it cannot be easily utilized to model temporal data.

Therefore, we do not include this model in our experiments for comparison. Our model is a

fully generative model for both word instantiations in documents and word-level features.

Before we further go to the formal description of our model, we discuss some intuitions

behind the model. In standard topic models, each word v is associated with many latent

topics β1:K . Each topic βk is a distribution over all terms in the vocabuary V . Intuitively,

the more a term appears in many topics, the more likely the term will have a high volume,

such as some stop words and functional words. On the other hand, many terms only

appear in a handful of topics and therefore these topics determine the volume of the term.

If we think of β as another representation of terms, we would like to associate these latent

variables with the term volumes. Following this intuition, we treat the volume of term v

at time-stamp t, denoted as Y
(t)
v , as a function of latent topics β. The simplest form of

such functions is a linear function:

Y (t)
v =

K∑

k=0

π(v,k)β
(t)
(k,v) + ǫv (9.1)

where πv is a vector of coefficients, β
(t)
(k,v)

is the probability that the term is “generated”

from topic k at time stamp t, and ǫv is a per-term “error”. In other words, the volume of

a term v depends on its prevalence in all topics at that time point. If ǫv follows a normal

distribution, namely ǫv ∼ N(0, σ2v), we can express the generation process of Y
(t)
V in terms

of a Normal distribution as follows:

Y (t)
v |π(v), β(t)(∗,v) ∼ N

(
πTv β

(t)
(∗,v), σ

2
v

)

Here, Y
(t)
v is treated as a real valued variable. In our experiments, we use the raw counts
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of term v at time epoch t as Y
(t)
v .

In order to obtain Yv at different time epochs, we need to have β for different time

points. We mention two basic categories of approaches in Section 9.6 and here we adapt

the first category, having a “Markovian assumption” on the evolution of topics over time.

More specifically, topics β evolve according to a state-space model and the documents

with their words are “generated” by the corresponding topics in the same time epoch.

Embedding these intuitions into the model, the generative process of the model is as

follows:

1. For each topic k in K:

Draw topics β
(t)
k |β(t−1)

k ∼ N
(
β
(t−1)
k , δ2I

)
.

2. For each term v in V :

Draw term volume Y
(t)
v ∼ N

(
πTv β

(t)
(∗,v), σ

2
)
.

3. For each document d in time epoch t:

(a) Draw θd ∼ Dir(α)

(b) For each word n:

i. Draw z(d,n) ∼ Multi(θ).

ii. Draw w(d,n) ∼ Multi
(
f(β

(t)
z )
)

where function f maps the multinomial natural parameters to mean parameters. The

graphical representation of the model is shown in Figure 9.1 where only two epocs are

shown. Note, the model can be easily extended in multiple ways. For instance, we can

also allow the hyper-parameters of topic proportions α to evolve over time, according

to a different state-space model, as already mentioned in [26]. In addition, the simple

state-space model can be replaced by a Brownian motion model [196], allowing arbitrary

granularity of time-series. We will explore these extensions in future work.
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9.2 Variational Inference with Kalman Filtering

The central problem in topic modeling is posterior inference, i.e., determining the distri-

bution of the latent topic structure conditioned on the observed documents. In our case,

the latent structures comprise the per-document topic proportions θd, per-word topic as-

signments z(d,n), the K sequences of topic distributions β
(t)
k and per-term coefficient vector

πv for characterizing term volumes. Similar to many topic models, the true posterior is

intractable [26, 196], meaning that we must appeal to an approximation.

Several approximate inference approaches have been developed for topic models. The

most widely used are variational inference (e.g., [28, 26, 196]) and collapsed Gibbs sampling

(e.g., [79, 201]). As noted previously by others [26, 196], collapsed Gibbs sampling is not

an option in the sequential setting because the distribution of words for each topic is not

conjugate to the word probabilities. Therefore, we employ variational inference for the

model.

The main idea behind variational inference is to posit a simple family of distributions

over the latent variables, namely variational distributions, and to find the member of that

family which is closest in Kullback-Leibler divergence to the true posterior. Variational

inference has been successfully adopted in temporal topic models (e.g., [26, 148, 196]).

For the model descried above, we adapt variational Kalman filtering [26] to the se-

quential modeling setting. We employ the following variational distribution:

q(β1:T , θ,Z|β̂1:T ,λ,Φ) =

K∏

k=1

q(β1
k, · · · , βT

k |β̂1
k, · · · , β̂T

k )×
T∏

t=1

( Dt∏

d=1

q(θd|λd)
Nd∏

n=1

q(z(d,n)|φ(d,n))
)

The variational parameters are a Dirichlet λd for the per-document topic proportions,

multinomials φ for each word’s topic assignment, and β̂ variables, which are “observations”

to a Variational Kalman Filter. The central idea of the variational Kalman filter is that

variational parameters are treated as “observations” in a common Kalman filter setting,
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while true parameters, here β(t), are treated as latent states of the model. By utilizing a

Kalman filter, we can effectively estimate these “latent states” through “observations”.

More specifically, our state space model is:

β
(t)
k |β(t−1)

k ∼ N
(
β
(t−1)
k , δ2I

)

β̂
(t)
k |β(t)k ∼ N

(
βtk, δ̂

2
t I
)

(9.2)

The variational parameters are β̂
(t)
k and δ̂t. The key problem of Kalman filter is to derive

the mean and variance for forward and backward equations, which can be used to calculate

the lower bound in variational inference. Using the standard Kalman filter calculation,

the forward mean and variance of the variational posterior are given by:

mt
k = E[βtk|β̂

1:t
k ] =

(
δ̂2

V t−1
k + δ2 + δ̂2

)
mt−1

k +

(
1− δ̂2

V t−1
k + δ2 + δ̂2

)
β̂tk

V t
k = E

[
(βtk −mt

k]) | β̂
1:t
k

]
=

(
δ̂2

V t−1
k + δ2 + δ̂2

)
(V t−1

k + δ2) (9.3)

with initial conditions specified by fixed m0 and V 0. The backward recursion then calcu-

lates the marginal mean and variance of βtk given β̂
1:T
k as:

m̃t−1
k = E[βt−1

k |β̂1:T
k ] =

(
δ2

V t−1
k + δ2

)
mt−1

k +

(
1− δ2

V t−1
k ] + δ2

)
m̃t

k

Ṽ t−1
k = E

[
(βt−1

k − m̃t−1
k ]) | β̂1:T

k

]
= V t−1

k +

(
V t−1
k

V t−1
k + δ2

)2(
Ṽ t
k − (V t−1

k + δ2)
)
(9.4)

with initial conditions m̃T = mT and Ṽ T = V T .

With these forward and backward equations in hand, we turn to calculate the follow-

ing lower bound (assuming Ω = {α,β,π, σ2}) with the help of variational distributions
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introduced in Equation 9.3:

logP (W,Y|Ω) ≥ Eq [log p(β)] + Eq [log p(W,Z,θ|β,α)] + Eq [log p(Y|π,β, σ2)] +H(q)

= Eq [log p(β)] + Eq [log p(W|Z,β)] + Eq[log p(Z|θ)] + Eq [log p(θ|α)] + Eq[log p(Y|π,β, σ2)] +H(q) (9.5)

where term H(q) is the entropy. To tighten the above bound on the likelihood of the

observations given by Jensen’s inequality is equivalent to minimize KL-divergence. In the

above bound, the term Eq[log p(W,Z,θ|β,α)] is standard for topic models, when logistic-

normal distribution is applied to represent topics (e.g., [26, 196]. The term Eq[log p(β)]

is standard for temporal topic models, which utilize the Kalman filter as a sequantial

modeling tool. The term Eq[log p(Y|π,β, σ2)] can be calculated similarly to the document-

level response variables, introduced in [27]. We will discuss these expectations in detail.

For the first term of the last line in Equation 9.5, we utilize the forward and backward

equations introduced in Equation 9.4 and follow the similar steps in [26]:

Eq [log p(β)] = −VKT

2
(log δ2 + log 2π) − 1

2δ2

T∑

t=1

K∑

k=1

[(
m̃t

k − m̃t−1
k

)2
]
− 1

δ2

T∑

t=1

K∑

k=1

Tr
(
Ṽ t
k

)

+
1

2δ2

K∑

k=1

Tr
(
Ṽ T
k

)
− 1

2δ2

K∑

k=1

Tr
(
Ṽ 0
k

)

For the second term in the same line, we have:

Eq[log p(W|Z,β)] =
T∑

t=1

Dt∑

d=1

Nd∑

n=1

(
K∑

k=1

φ(n,k)m̃
t
(k,w) −

K∑

k=1

φ(n,k)Eq

[
log
∑

w′

exp(β(k,w′))
])

where the second line demonstrates the essential problem of non-conjugacy of using the

logistic-normal distribution for topics. In order to calculate Eq

[
log
∑

w′ exp(β(k,w′))
]
, we

further obtain a lower bound by introducing another variational parameter ζt and upper
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bound the negative log normalizer with a Taylor expansion as follows:

Eq

[
log
∑

w′

exp(β(k,w′))
]
≤ ζ−1

t

(∑

w′

Eq[exp(β(k,w′))]
)
−1 + log(ζt)

where the expectation Eq[exp(β(k,w′))] is the mean of a log normal distribution with the

mean and variance obtained from the variational parameters, essentially Kalman Filters,

in our case. For the third term of the last line in Equation 9.5, we have:

Eq[log p(Z|θ)] =
T∑

t=1

Dt∑

d=1

Nd∑

n=1

K∑

k=1

φ(n,k)

[
Ψ(λ(d,k))−Ψ

( K∑

k′=1

λ(d,k′)

)]

and for the fourth term, we have:

Eq [log p(θ|α)] =
T∑

t=1

Dt∑

d=1

{(
K∑

k=1

(αk − 1)
[
Ψ(λ(d,k))−Ψ

( K∑

j=1

λ(d,j)

)])
+ log Γ

( K∑

k=1

αk

)
−

K∑

k=1

log Γ(αk)

}

For the last term in the same line, we have:

Eq[log p(Y
(t)
v |πv, β(t)(,v), σ

2)] = −1

2
log 2π − 1

2
log σ2

−

(
Y

(t)
v

)2

2
+

1

σ2

[
Y (t)
v

K∑

k=1

π(v,k)m̃
t
(k,v) −

1

2

K∑

i=1

K∑

j=1

π(v,i)

(
m̃t

(i,v)m̃
t
(j,v)

)
π(v,j)

]

For the entropy term H(q), we have:

−H(q) = Eq[log q(β|β̂)] + Eq [log q(θ|λ)] + Eq [log q(Z|Φ)]

=
T∑

t=1

K∑

k=1

(T
2
log 2π

)
+
1

2

T∑

t=1

K∑

k=1

V∑

v=1

log Ṽ t
(k,v) +

T∑

t=1

Dt∑

d=1

{(
K∑

k=1

(λ(d,k) − 1)
[
Ψ(λ(d,k))−Ψ

( K∑

j=1

λ(d,j)

)])

+ log Γ
( K∑

k=1

λ(d,k)

)
−

K∑

k=1

log Γ(λ(d,k))

}
+

T∑

t=1

Dt∑

d=1

Nd∑

n=1

K∑

k=1

φ(n,k) log φ(n,k)

By using the expectations with respect to variational distributions, we can optimize the
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Algorithm 2: Variational inference with Kalman filtering.

Initialize β̂ randomly.
while relative improvement in L > 0.00001 do

E step:
for t = 1 to T do

for i = 1 to D do
Update λd according to Equation 8
Update φd according to Equation 9

Update ζt according to Equation 10

M step:
for v = 1 to V do

Update πv according to Equation 12
Update σ2v according to Equation 13

Update β̂ by using conjugate gradient descent

variational parameters as follows. For per-document parameters λ(d,k), per-word parame-

ters φn and per time epoch parameters ζt, we have similar update equations as standard

topic models:

λ(d,k) = αk +

Nd∑

n=1

φ(n,k)

φ(n,k) ∝ exp

(
Ψ(λ(d,k))−Ψ

( K∑

k′=1

λ(d,k′)

))
× exp

(
m̃t

(k,w) − Eq

[
log
∑

w′

exp(β(k,w′))
])

ζt =
1

Nt

Dt∑

d=1

Nd∑

n=1

(
K∑

k=1

φ(n,k)
∑

w

exp
(
m̃t

(k,w) + Ṽ t
(k,w)/2

))

Since πv is a vector of coefficients across all time epochs T , we gather the β∗(∗,v) from all

time epochs and form a T ×K matrix X where each row is a vector of β values discussed

before. We can obtain the following equation by using the notation of X:

Eq[X
TX]πv = Eq[X]TYv
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and therefore, we have

πv =
(
Eq[X

TX]
)−1

Eq[X]TYv

where the tth row of Eq[X] is just Eq[β
t
(,v)]. Similar to linear regression but in the expected

version, we can obtain the update equation for σ2v as:

σ2v =
1

T

(
YT

v Yv − 2YT
v Eq[X]πv + πTv Eq[X

TX]πv

)

where πv is the new estimate value.

The real computational hurdle is to calculate the updates of β̂. Gathering all terms

in the lower bound involving β and differentiating them with respect to β̂t(k,v), we have:

− 1

δ2

T∑

t=1

(
m̃t

(k,v) − m̃t−1
(k,v)

)(∂m̃t
(k,v)

∂β̂t(k,v)
−
∂m̃t−1

(k,v)

∂β̂t(k,v)

)

+

T∑

t=1

(
N(t,v)φ(v,k) −

V∑

v=1

N(t,v)φ(v,k)ζ
−1
t exp

(
mt

(k,v)

+ V t
(k,v)/2

))∂m̃t
(k,v)

∂β̂t(k,v)
+

1

σ2

T∑

t=1

Y t
v π(v,k)

∂m̃t
(k,v)

∂β̂t(k,v)

−
[

1

2σ2

K∑

i=1

K∑

j=1

π(v,i)

(
m̃t

(i,v)m̃
t
(j,v)

)
π(v,j)

]
∂m̃t

(k,v)

∂β̂t(k,v)

Unfortunately, no closed-form solution for β̂ can be found. We adapt optimization tech-

niques to obtain a local optimum of the β̂ values. In our experiments, we utilize the

conjugate gradient algorithm implemented in GSL library1, which requires us to provide

the gradients. The forward-backward equations for Eq can be used to derive a recurrence

1http://www.gnu.org/software/gsl/
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for the gradients. The forward recurrence is:

∂mt
(k,v)

∂β̂
(s)
(k,v)

=

(
δ̂2

V t−1
k + δ2 + δ̂2

)
∂mt−1

k

∂β̂s(k,v)

+

(
1− δ̂2

V t−1
k + δ2 + δ̂2

)
I[s == t]

with the initial condition ∂m0
k/∂β̂k

s
= 0. The backward recurrence is then:

∂m̃t
k

∂β̂k
s =

(
δ2

V t−1
k + δ2

)
∂mt−1

k

∂β̂k
s

+

(
1− δ2

V t−1
k + δ2

)
∂mt

k

∂β̂k
(s)

with the initial condition ∂m̃T
k /∂β̂k

s
= ∂mT

k /∂β̂k
s
. We outline the overall inference algo-

rithm in Algorithm (2).

For prediction, since no documents are observed at test time, we initialize β values

with their expected values, according to Equation 9.2 and then obtain the mean of the

posterior distribution by the Kalman filter algorithm, as a standard problem. By using

the learned π values, we could easily predict the volume of terms through Equation 9.1.

9.3 Baseline Models

Time series analysis has been long studied in many fields. Here, we discuss the possibility

to employ one traditional time series tool, autoregressive model, to track the volume of

terms. In univariate autoregressive model AR(p), a response Xt can depend on its previous

values, ranging from Xt−1 to Xt−p:

Xt = w +

p∑

k=1

πkXt−k (9.6)
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Table 9.1: AR model on NIPS dataset

p 2007 2008 2009 Avg.

1 98.57 90.51 99.42 96.17

2 101.72 83.20 91.06 92.00

3 97.66 77.31 97.00 90.39

4 112.83 75.62 95.98 94.81

5 118.10 91.64 108.33 106.03

6 118.65 99.00 108.34 108.66

7 118.76 98.99 117.50 111.75

8 122.73 95.93 116.72 111.79

9 122.55 96.23 115.85 111.54

10 143.17 100.71 124.40 122.76

Table 9.2: AR model on ACL dataset

p 2005 2006 2007 2008 2009 Avg.

1 131.85 524.04 39.57 592.91 126.29 282.93

2 210.74 316.38 106.31 434.15 181.98 249.91

3 247.73 248.17 104.72 381.84 140.87 224.65

4 258.74 246.58 114.23 447.71 166.09 246.67

5 244.41 223.99 53.12 428.17 185.00 226.94

6 250.49 297.98 42.74 385.26 209.24 237.14

7 169.25 328.75 51.14 345.98 262.54 231.53

8 168.54 332.20 51.58 396.08 291.13 247.90

9 155.96 326.73 47.11 400.96 291.60 244.47

10 156.59 355.13 49.15 399.28 310.65 254.16

where w is a constant and π is a vector of coefficients. Similar to linear regression, the

aim of AR(p) is to learn w and π, as well as the optimal choice of p, sometimes. If we treat

the volume of each term as X, it is obvious that the volume of terms are independent

with each other. A slightly more complicated model, Multivariate AutoRegressive model

MAR(p), captures the correlations between M variables and preserves the simplicity of the

model:

Xt = w +

p∑

k=1

AkXt−k (9.7)
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where X and w are bothM dimensional vectors and each A is aM ×M matrix, encoding

the correlations. Although it first seems appealing, some limitations of the model prevent

it from being applied in text mining scenarios. One of the drawbacks is that the model

usually requires the number of variables to be smaller than the time stamps, which is

not a problem in many traditional fields (e.g., temperature and humidity over time).

However, in many text corpora, we wish to track thousands, or even millions of terms

(e.g., in Twitter) while the total number of time epochs to be measured is significantly

smaller (e.g., in year, months, days). In that case, it is impossible to solve the Equation

9.7, according to Neumaier and Schneider [149]. Therefore, we do not use MAR in our

experiments.

The second baseline used in experiments is Latent Dirichlet Allocation (LDA) [28].

We run LDA for the whole dataset. For each time epoch t, we obtain empirical topic

distributions on t, βt. For each term v, we treat β(,v) as features and Y
(t)
v as the response,

building a regression model on them. Note, this model is unrealistic because in reality,

we cannot obtain empirical topic distributions from the test set due to the fact that

no documents should be observed from the test set. However, we include this model

in the experiments for the purpose to show that topic representations can help volume

prediction. A more realistic state-of-the-art model, DTM, is also used in the experiments.

Like our model, β values on the test time epoch are estimated by the Kalman filter

algorithm. Similar to LDA, the topic distributions obtained by DTM are treated as features

and we build a regression model based upon these features. The regression model used in

experiments is Support Vector Regression (SVR), implemented in libSVM2.

2http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
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Figure 9.2: Performance comparison on the NIPS dataset.

9.4 Experiments

Two datasets of scientific papers are used in our experiments. One is from the NIPS

conference series. We downloaded all electronic copies of papers from online proceedings3

and converted into text format using pdftotext. We tokenize the converted files and

keep the terms with frequency larger than 10, resulting in to 38,029 distinct terms and

4,360 papers in total, spanning 24 years. The second dataset is from the 2009 release

of The ACL Anthology4, consisting of text format of papers published in the community

of computational linguistics. This dataset has 14,590 papers with 74,189 distinct terms

(frequency more than 10), ranging over 37 years. Both datasets have timelines that are

long enough such that some topics have changed over time.

The major evaluation measure is of course the accuracy of the predicted volume of

terms. In this work, we denote the estimated volume of term v at time stamp t as Ŷ
(t)
v .

Therefore, we measure the estimation error by calculating the Root Mean Square Error

(RMSE) between estimated values and real values:

RMSEt =

√
1

V

∑

v

(
Ŷ

(t)
v − Y

(t)
v

)2

3http://books.nips.cc/
4http://clair.si.umich.edu/clair/anthology/
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Figure 9.3: Performance comparison of different K on the NIPS dataset.

For both datasets, we adapt an “incremental” evaluation process, mimicking real appli-

cation scenarios. In order to predict the volume at time t, we use the documents in all

possible previous years for training. We sequentially train and test the model in multiple

years and average the RMSE over these time periods. We conduct experiments on the last

three years for the NIPS dataset and the last five years for the ACL dataset. For hyper-

parameters, α is set to 50/K, δ2 is set to 0.1 and δ̂2 is set to 1.0, similar as [26], for all

experiments.

9.4.1 Volume Prediction

As discussed in Section 9.3, the first baseline we consider is the AR model for terms. In our

case, we essentially build an ARmodel for each term. Rather than choosing the optimal p by

some criteria, such as Bayesian information criterion (BIC)5 or Akaike information criterion

(AIC)6, we simply show the predictive performance by varying p values. Therefore, it is

possible that the optimal p value is out of the ranges demonstrated here. The results for

the AR model on the NIPS dataset are shown in Table 9.1 and the results on the ACL dataset

are shown in Table 9.2, where the optimal performance is in bold. Several conclusions

can be made regarding these results. First, for both datasets, the optimal performance is

5http://en.wikipedia.org/wiki/Bayesian information criterion
6http://en.wikipedia.org/wiki/Akaike information criterion
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Figure 9.4: Performance comparison on the ACL dataset.
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Figure 9.5: Performance when a fraction of the test documents is provided to the model.

not always obtained on p = 1, when the volume of terms only depends on the previous

year. On average, p = 3 gives optimal performance on both datasets, meaning that the

volume of terms in the year t depends on the previous three years. For the NIPS dataset,

after the optimal point, the performance decreases as p increases, which indicates that

for the AR model, no additional advantages can be obtained if we consider higher order

dependencies on this particular dataset. This observation might also indicate that the

latent relationships among terms, essentially topics, may change over time. Some new

terms are introduced and some old concepts are outdated. For the ACL dataset, this is

more complicated since the performance fluctuates significantly as p varies. Unlike the

the NIPS dataset in which performance is relatively consistent over the recent three years,
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predictive performance on the ACL dataset differs significantly from year to year.

We run LDA, DTM and our model on both datasets while varying the number of topics,

K. The results for the NIPS and the ACL datasets are shown in Figures 9.2 where the best

RMSE values achieved by each model are shown for the last three years, and 9.4 where the

best RMSE values achieved by each model are shown for the last five years, respectively.

For each model, we only report its best performance. In addition, for both datasets, we

also compare these models to the best performance achieved by the AR model. Note, as

we mentioned before, LDA is unrealistic since β values for the test years are from test

documents while in reality these values should be estimated from the past, assuming no

documents observed in these test years. However, the purpose of showing the results

from plain LDA is to demonstrate that the volume predictive performance can be greatly

improved by treating topic probabilities as features if we can obtain them “correctly”. For

DTM and our model, these β values are estimated by the Kalman filter algorithm, mentioned

in Section 9.1, which do not depend on the test documents at all. The first observation is

that the overall performance is significantly improved over the AR model, in general. LDA is

usually, but not always, better than AR in terms of average performance. For DTM and our

model, which both consider temporal smoothing on topics, the performance is consistently

better than both LDA and AR. Our model is also better than DTM on both datasets not only

in terms of average performance but also in terms of performance on individual years.

In order to better understand the performance of topic models, we plot the performance

on different K values averaged over the test years for the NIPS dataset in Figure 9.3.

It is clear that performance is relatively stable compared to the AR model, where it is

sensitive to the p value, shown in Table 9.1. However, for all models, as K increases, the

performance slightly decreases, indicating that a higher value of K may lead models to

over-fit. In any case, optimal performance is obtained from 50-70 topics for DTM and our

model, which seems reasonable since NIPS is a relatively small research community and

230



www.manaraa.com

20 50 100 150 200 250 300 350
1000

1200

1400

1600

1800

2000

2200

2400

Topics

P
er

pl
ex

ity
 

 

LDA
DTM
Our Model

Figure 9.6: Perplexity comparison on NIPS dataset.

the topics are consistent over consecutive years. Similar conclusions can also be made for

the ACL dataset.

Since DTM and our model prediction are performed on the year in which no documents

are observed, it may be interesting to see whether performance would be improved if we

partially observe the test documents. We pick the best K from the above experiments and

feed a given fraction of test documents in a particular year to both models. The results

are shown in Figure 9.5. As expected, performance improves on both datasets for both

models if we observe partial data. However, when around 30% to 50% of test documents

are observed, performance stabilizes.

9.4.2 Temporal Perplexity

Although we argue that perplexity may not be an appropriate evaluation method for

temporal topic models, or for topic models in general, we still provide a comparison of

perplexity between LDA, DTM and our model. Note, the performance on perplexity might

be misleading because this measure is to evaluate how words in the documents can be

assessed. Therefore, we perform the standard steps to calculate perplexity on documents

in test years. As mentioned earlier, the real performance of these models should be

considered when test documents are not available and how reliably the models can predict
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Figure 9.7: Perplexity comparison on ACL dataset.

the response variables, not words. We show perplexity on the NIPS and ACL datasets in

Figures 9.6 and 9.7, respectively. Overall, the perplexity values of DTM and our model are

lower than LDA, for different K values, which confirms the observations in [26, 196]. In

addition, perplexity decreases as K increases in general, indicating that a larger K may

explain words better. However, the difference of perplexity between DTM and our model is

relatively small, compared to the volume predictive performance. This is not unexpected

because our model shares the same “generative” process for words in documents as DTM.

Therefore, this observation also confirms that perplexity may not be appropriate to truly

reflect the performance of different models, in terms of the tasks we care about. However,

we do believe that a thorough study of the relationships of perplexity and the performance

of third-party tasks for topic models is needed.

9.5 Summary

In this chapter, we introduced a real-world task—tracking the volume of terms—to which

temporal topic models can be applied. We proposed a new type of topic model incorpo-

rating the volumes of terms into the temporal dynamics of topics and directly optimize for
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the task. We combined state-space models and the volume of terms in a supervised learn-

ing fashion which enables us to effectively predict the volume in the future. The volumes

of latent topics are by-products of our model, demonstrating the superiority of utilizing

temporal topic models over traditional time-series tools (e.g., autoregressive models) to

tackle this kind of problem. The proposed model can be further extended with arbitrary

word-level features which are evolving over time. We presented the results of applying the

model to two datasets with long time periods and showed its effectiveness over non-trivial

baselines. Future work might include the adoption of recently developed online variational

inference algorithms [86] to our model, enabling the processing of large scale datasets.

9.6 Bibliographic Notes

In this section, we review three directions of related work. First, we summarize all up-

to-date topic models which try to incorporate temporal dynamics into the model. Then,

we discuss the evaluation of these models and the potential to apply them in real-world

applications. In the end, we present the attempts to embed side-information, or features

into topic models.

To incorporate temporal dynamics into topic models, many models have been pro-

posed. Note, as we mentioned, these attempts are general-purpose models, meaning that

no real-world tasks are explicitly addressed. In general, all these models fall into two cat-

egories. The models in the first category do not impose a global distribution assumption

about how topics evolve over time. In other words, these models assume that topics change

over time depending on their previous conditions, effectively making “Markovian assump-

tions”. The examples in this category are Dynamic Topic Model (DTM), proposed by Blei

and Lafferty [26] and Continuous Time Dynamic Topic Models (cDTM), proposed by Wang

et al. [196], embedding state-space models into topic models. Our work is inspired by
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Table 9.3: Evaluation on Temporal Topic Models

(Temporal) Perplexity [26, 148, 196, 199, 224, 6, 103, 111]

Timestamp Prediction [201, 196, 111]

Classification/Clustering [224]

Ad-Hoc [201, 199, 224]

this type of model. The second category of models usually imposes a global distribution

of temporal dynamics. For instance, Wang et al. [201] introduce a beta distribution over

timestamps and incorporate it into the standard topic model. Masada et al. [140] assume

a Gaussian distribution over the whole time-line of topics. Although these models are

proposed under different contexts, the drawback of this category is that the distributional

assumption is hard to justify. Based on the two basic categories, other extensions are

proposed. For example, Nallapati et al. [148] and Iwata et al. [103] focus on the problem

of modeling topic spreading on timelines with multiple resolutions, namely how topics can

be organized in a hierarchical way over time.

As in traditional topic models, the effectiveness of temporal topic models is difficult

to evaluate in general. This is partly because these models are introduced without con-

sidering any tasks, making the process of evaluating them on third-party tasks ad-hoc.

Due to a lack of evaluation tasks, comprehensive comparisons between models are seldom

conducted. In order to better illustrate how temporal topic models have been evaluated,

we show them in Table 9.3, according to the evaluation methods mentioned in papers. It is

clear that temporal perplexity is a popular evaluation method. However, as pointed out in

[31], perplexity may not have correlations with the quality (e.g., coherence) of latent top-

ics. In addition, little is known, both theoretically and empirically, that a model achieving

lower perplexity will perform better on real-world applications which we care about. Be-

sides perplexity, several papers proposed some ad-hoc evaluation methods (named under

“Ad-hoc” in the table) to demonstrate the potential capabilities of their models, such as
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the coherence of topics measured by K-L divergence, where these methods are not shared

by other papers and are also not really task-driven. Nearly all papers show “anecdotal

examples” of what kind of topics are found over time.

Since our model can be considered as an extension to incorporate side information, or

features into topic models, we also review other similar attempts. Basically, two kinds of

side information might be considered: document-level features and word-level features. For

document-level features, models are proposed (e.g., [27, 126, 229, 164]) to incorporate them

either conditioned on latent topic assignments or conditioned on per-document hyper-

parameters. Either maximum conditional learning or max-margin learning is employed

for inference. For word-level features, a recently proposed model [158] introduce a method

to embed arbitrary word-level features. Unlike the ones for document-level features, this

model is not a fully generative model and therefore we cannot easily infer these feature

values.
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Chapter 10

Topic Modeling with Geographical

Information

In previous two chapters, we explored how temporal information can be handled through

topic modeling. These techniques are demonstrated on two specific applications on cap-

turing temporal dynamics of topics. Here, we change our focus to utilizing geographical

information. Micro-blogging services such as Twitter, Tumblr and Weibo, have become

very important tools for online users to share breaking news and interesting stories. They

are even used for organizing flash mobs and protest groups. For example, Twitter was

used extensively in a number of events and emergencies, ranging from elections, earth-

quakes and tsunamis to playing an instrumental role in facilitating political upheavals in

the Middle East.

Key Questions: In addition to its use as a content sharing platform, micro-blogging

services like Twitter, along with other location sharing services such as Foursquare,

Gowalla, and Facebook Places are nowadays supporting location services. That is, users

are able to specify their location in messages, either explicitly, by letting users choose

their place, or implicitly, by enabling geo-tagging functionality. This presents an exciting
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opportunity to answer a range of questions:

1. How is information created and shared in different geographic locations? What is

the inherent geographic variability of content?

2. What are the spatial and linguistic characteristics of people? How does this vary

across regions?

3. What is a good model for human mobility? Can we discover patterns in users’ usage

of micro-blogging services.

There exists a considerable body of research addressing these issues [142, 198, 67, 50,

49]. However, the analysis of data still poses a considerable challenge due to its size and

due to the integration of a range of different attributes. To our knowledge this is the first

attempt to address both scale, location and language modeling in an integrated fashion.

That is, we customize the model to be sufficiently sparse to allow for a large scale in

terms of users and locations. Furthermore, we design an accurate and scalable inference

algorithm.

Our algorithm allows us to discover language patterns and to extract users’ interests

from geo-tagged messages. We achieve this thanks to (and despite of) the sheer amount

of data and the diversity of language variations used on Twitter. In addition, there are

many factors to influence the language used in a tweet with a particular location. For

example, words used in a tweet certainly depend on the author and the location where

the tweet is written.

A user in New York City might be interested in entirely different matters compared

to a user in Beijing. Moreover, the choice of words is clearly influenced by the topic of

the tweet. Finally, location specific language will cause the same event to be reported

quite differently in different locations (e.g. a soccer game between Brazil and Italy being

reported quite differently in those two countries). Thus, different geographical regions
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have different language variations and topics have different chances of being discussed in

these regions.

It turns out that users tend to appear only in a handful of geographic locations [50].

This is useful in improving location accuracy in estimates. The arising challenge is how

to best integrate all these strands of information into a single model.

Prior Work: Previous research effort falls into two groups: Some work only models

certain aspects of the problem described above while ignoring the remainder. For instance

[219] investigated how location information can be used to better understand patterns in

social photo sharing services. A Gaussian mixture model and a probabilistic topic model

are combined to learn clusters of locations and latent topics. However, no regional language

models are learned and user preferences are also not taken into account. Thus, models

developed for such data are usually limited and cannot easily be applied to content-rich

social media. Similarly [50] proposed a two component Gaussian mixture model to study

the mobility of users in a number of location sharing services. However, their model does

not incorporate content at all. At the other end of the spectrum we find rather complex

models, however, without the ability to scale to industrial size. For instance [67] propose

a model to predict locations of users in Twitter. Their model has a global topic matrix

and each region has different variation of this matrix. However, the inference algorithm is

complex. Furthermore, the problem of over-parametrization makes it nontrivial to perform

inference accurately. Furthermore, previous models ignore user preferences.

Our Contribution: We propose a model that is both flexible enough to embed all

reasonable components of content and geographical locations, as well as user preference

modeling. Moreover, it scales to real-world datasets to handle millions of documents and

users.

In this chapter, we address the problem of modeling geographical topical patterns

on Twitter by introducing a novel sparse generative model. It utilizes both statistical
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topic models and sparse coding techniques to provide a principled method for uncovering

different language patterns and common interests shared across the world. Our approach

is vital for applications such as user profiling, content recommendation and topic tracking

and the method can be easily extended in a number of ways. We show that interesting

topics can be identified by the model and we demonstrate its effectiveness on the task

of predicting locations of new messages and outperform non-trivial baselines. The main

contributions are as follows:

• An additive generative model of content and locations that incorporates multiple

facets of micro-blogging environments in an integral fashion.

• Sparse coding techniques and Bayesian treatments are smoothly embedded in our

modeling, resulting in an efficient and effective implementation.

• Our model outperforms several state-of-the-art algorithms in the task of location

predictions and it demonstrates interesting patterns in real-world datasets.

The chapter is organized as follows. In Section 10.9 we will briefly discuss some recent

related work in terms of geographical modeling in micro-blogging environments. In Sec-

tion 10.2 we proceed with detailed description of the proposed model with implementation

notes. In Section 10.7 we compare our model with several state-of-the-art algorithms in

a number of tasks and demonstrate its effectiveness. Finally, we conclude in Section 10.8

with discussions and future work. We now introduce our model that addresses the prob-

lems raised in the previous sections. We start with an overview of the basic components in

Section 10.1 by discussing generative models without explicit switch variables. This allows

us to describe the basic aspects of our model in Section 10.2. In order to learn more dis-

criminative features, in Section 10.3, we impose L1 penalty on certain parts of our model,

resulting in a sparse modeling approach. For geographical modeling, non-informative prior
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distributions are discussed in Section 10.5. More implementation details follow in Section

10.6.

10.1 Preliminaries

Our model is closely related to the Sparse Additive Generative model (SAGE). The basic

idea of the SAGE model is that the outcome variable is generated by the mixture of all

components without any explicit indicator variable. The key difference to traditional

mixture models is that the mixture occurs not in terms of the expectation parameters

(i.e. the distribution) but in terms of the natural parameters of the exponential family

model. Such a model has the advantage that it can easily take a large number of aspects

into account without having to infer a complex indicator variable distinguishing the set of

causes.

To be more concrete, we take language modeling as an example. Suppose we have a

vocabulary V where each term v is generated by a background language model φ0, a per-

user background language model φu and a regional language model φg. A conventional

mixture model would attempt to represent the joint influence of the three components by

a linear combination of the associated densities. Denote by p(v |φ) an exponential family

model of the form

p(v |φ) = exp
(
φv − g(φ)

)
where g(φ) = log

∑

v

exp
(
φv

)

Here g(θ) is often referred to as the log-partition function as it ensures that the distribution

is properly normalized. In particular for the discrete distribution φ(v|φ) is well-defined

for all choices of φ. We now combine the factors via

P (v |φ0,φu,φg) := p(v |φ0 +φu + φg) (10.1)
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Table 10.1: Notation

Symbol Size Usage

η0 1× R global region distribution
ηuser U× R user-dependent region distribution

θ0 1×K global topic distribution
θgeo R×K region-dependent topic distribution
θuser U×K user-dependent topic distribution

φ0 1× V global term distribution
φgeo R× V region-dependent term distribution
Π K× V a global topic matrix
µ R

2 mean location of a latent region
Σ R

2×2 covariance matrix of a latent region

Unlike in traditional topic models, the formalism above does not require an indicator vari-

able to specify which component to use in generating v. In addition to additive modeling,

different language models can be constructed in such a way as to incorporate more dis-

criminative terms. More specifically, in our model we choose φ0 to denote the (baseline)

log frequency of v in the dataset while other components are used to model the differences

between the baseline and the background model. This idea is explored in [231, 65] to

model topics. Here, we extend it to model regions and topics jointly and to propose an

efficient inference procedure.

10.2 Model Description

We start the discussion with some notations in our model. Each tweet d = {wd, ld, ud}

consists of three parts: Here wd is the word vector for the tweet, following a simple bag

of word assumption, ld is a real-valued pair ld = {l0, l1}, representing the latitude and

longitude where this tweet is written and ud is the user id for the author of the tweet. For

simplicity, we assume that all the tweets in our dataset are generated by a fixed vocabulary

V and a fixed user base U . Moreover, we assume that the geographical locations have been
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clustered into R latent regions. Each region r ∈ R is characterized by a mean location µr

and a covariance matrix Σr. We assume that there are three types of language models: a)

a background language model φ0, b) a per-region language model φgeo and c) a topical

language model Π. All these language models are over the vocabulary V. Each tweet is

influenced by these three factors simultaneously. Before describing the generative process

of our model, on a high level, our model encodes the following intuitions:

• Words used in a tweet depend on both the location and topic of the tweet.

• Different geographical regions have different language variations. Topics have differ-

ent chances to be discussed in different regions (e.g. bullfights in India are unlikely

to occur; likewise Spaniards are unlikely to discuss Divali).

• Users tend to appear in a handful geographical locations.

For each tweet, the model generates the location, the topic and terms in the tweet consec-

utively. In our model, all locations are categorized into R latent regions. For each tweet,

we first choose from which latent region this tweet is written. To generate the region index

r, we utilize a multinomial model as follows:

P
(
r |η0,ηuseru

)
= p
(
r |η0 + ηuseru

)
(10.2)

Here η0 is a global distribution over latent regions and ηu is a user dependent distribution

over latent regions for user u. Each location ld is drawn from a latent region r by a

region-dependent multivariate normal distribution

ld ∼ N (µr,Σr). (10.3)
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Once the region and the location is generated, a topic z is selected dependent on both the

latent region and the author of tweet:

P
(
z |θ0,θuseru ,θ

geo
r

)
= p
(
z |θ0

j + θuseru,j + θ
geo
r,j

)
(10.4)

Here θ0 is a global distribution over topics, θuseru is a user-dependent distribution over

topics and θ
geo
r is a regional distribution over topics. The intuition is that the topic

is heavily influenced where this tweet is written and user preferences. After generating

the topic index z each word w in the tweet is generated by drawing from the aggregate

distribution:

P
(
w | z,φ0,φ

geo
r ,Πz

)
= p
(
w |φ0 + φ

geo
r +Πzd

)
. (10.5)

In this case φ0 parametrizes a global distribution over terms, φgeo describes the a region-

dependence and Π ∈ R
K×V is a topic matrix where each row is a distribution over terms.

With the above specification the generative story for a single tweet d can be expressed

as follows:

• Draw a latent region index

rd ∼ p(rd |η0 + ηuseru )

• Draw a topic index

zd ∼ p(zd |θ0 + θuseru + θ
geo
r )

• Draw a location

ld = {l0, l1} ∼ N (µr,Σr)
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Figure 10.1: A graphical representation of our model

• For each token w in wd draw

w ∼ p(w |φ0 + φ
geo
r ,Πzd)

This generative process applies to all tweets in the corpus. The graphical representation

of the generation process is shown in Figure 10.1.

10.3 Sparse Modeling

As discussed in Section 10.1, the benefit of our approach is to learn discriminative features

from data, rather than obtaining redundant ones in different components of the model.

In order to achieve this goal, we also impose prior distributions over certain parts of our

model. More specifically, for the following components in the model, we impose zero-mean

Laplace distributions.
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The rationale is that users in certain regions are likely to draw their words either

from a location independent distribution or from a small, i.e. sparse corpus of additional

terms which are more prevalent in a given location rather than globally. Likewise, we

assume that topics consist of a background distribution of generic words plus a sparse set

of additional words which are characteristic for the particular topic. Note that we do not

require these words to be unique. That is, the word “jaguar” might for instance be more

prevalent in the “animals” and in the “cars” topic. However, we do not expect it to be

prevalent in a large number of topics beyond what a background language model would

indicate. We have

η0
r ∼ L(0, ω0) ηuseru,r ∼ L(0, ωu)

θ
geo
z ∼ L(0, λl) θuseru,z ∼ L(0, λu) θ

geo
r,z ∼ L(0, λr)

φ0
v ∼ L(0, ψ0) φ

geo
r,v ∼ L(0, ψl)

Πz,v ∼ L(0, ψt)

where L(µ, b) is a Laplace distribution with mean µ and scale parameter b. A zero-mean

Laplace prior has the same effect as placing an L1 regularizer on these components, re-

sulting in a sparse solution to the model. Here, a sparse modeling approach does not

only encourage more discriminative features to be learned, but also leads to a more ef-

ficient learning algorithm, which will be introduced below. We use ISTA [20] algorithm

to do sparse optimization in our work. Note that besides Laplace distributions used in

this chapter, other distributions could be employed, too. For instance using a normal

distribution as prior on all elements amounts to a latent Gaussian process induced by the

parameters.
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10.4 Inference Algorithm

Before we proceed with the inference algorithm, we introduce the following shorthands to

simplify our notation:

P (zd = k |θ0,θuseru ,θ
geo
r ) = αu,r,k

P (w = v | zd,φ0,φ
geo
r ,Π) = βr,z,v

P (r = t |η0,ηuseru ) = ρu,t

We treat topic assignments z and latent region assignments r as latent variables and all

other variables as model parameters. A mixture between EM and a Monte Carlo sampler

is utilized to effectively learn all parameters for the model along the lines of [193]. In

the E-step, we sample latent region assignments and topic assignments by fixing all other

parameters by Gibbs sampling. In the M-step, we optimize model parameters by fixing

all latent region assignments and topic assignments. We iterate this until convergence.

More specifically, in the E-step, we iteratively draw latent region assignments and

topic assignments for all tweets. For each tweet, a latent region r is firstly drawn from the

following distribution, conditioned on the old topic assignments:

r ∼ P (ld |µj ,Σj)× ρu,j ×αu,j,k ×
Nd∏

i=1

βj,k,v (10.6)

where P (ld |µj,Σj) is the pdf function for a multivariate normal distribution and k is the

old topic assignment. After r is sampled, we sample the topic assignment z for the same

tweet, conditioned on the newly sampled r:

z ∼ αu,r,k ×
Nd∏

i=1

βr,z,v (10.7)
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where r is the new region index. In the M-step, we maximize the log likelihood of the model

with respect to model parameters by fixing all region and topic assignments obtained in

the E-step. For geographical modeling, the maximum likelihood estimation (MLE) of

parameters can be obtained in closed form:

µj = N̄j =
1

#(d, j)

D∑

d=1

I(rd = j)ld (10.8)

Σj = Sj =
1

#(d, j) − 1

D∑

d=1

(ld − µj)
T (ld − µj) (10.9)

where #(d, j) is the number of tweets assigned to region j. Indeed, µj is set to the

sample mean and Σj is set to the sample variance. For other parameters, unfortunately,

no closed-form solutions exist. Therefore, we adopt gradient-based optimization methods

to maximize the likelihood. Let L be the likelihood of the model. The gradients of model

parameters can be obtained as follows. For η0 and ηuser, we have:

∂η0
t (L) =

U∑

u=1

d(u, t)−
U∑

u=1

d(u)ρu,t

∂ηuseru,t (L) = d(u, t) − d(u)ρu,t (10.10)

where d(u, t) is the number of tweets produced by user u are assigned to the region t and

d(u) is the total number of tweets generated by user u. For the global topic distribution
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θ0, user topic distributions θuser and regional topic distributions θgeo, we have:

∂θ0
k(L) =

U∑

u=1

d(u, k) −
U∑

u=1

R∑

t=1

d(u, t)αu,t,k (10.11)

∂θuseru,k (L) = d(u, k) −
R∑

t=1

d(u, t)αu,t,k (10.12)

∂θ
geo
t,k (L) =

U∑

u=1

d(u, t, k) −
U∑

u=1

d(u, t)αu,t,k (10.13)

where d(u, k) is the number of tweets produced by user u assigned to the topic k and

d(u, t, k) is the number of tweets written by the user u in the region t assigned to the topic

k. For the global language model φ0, regional language models φgeo and topical language

models Π, we have:

∂φ0
v(L) =

R∑

t=1

n(t, v)−
R∑

t=1

K∑

k=1

n(t, k)βt,k,v (10.14)

∂φ
geo
t,v (L) = n(t, v)−

K∑

k=1

n(t, k)βt,k,v (10.15)

∂Πk,v(L) =

R∑

t=1

n(t, k, v) −
R∑

t=1

n(t, k)βt,k,v (10.16)

where n(d, v) is the number of times term v appearing in tweet d, n(t, k) is the number of

terms associated to the topic k in region t, n(t, v) is the number of times term v appearing

region t, n(t, k, v) is the number of terms v assigned to the topic k appearing in the region

t. These gradients have an intuitive interpretation as the difference of the true counts and

their expected counts.
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10.5 Geograpical Location Modeling

In the previous section, we use a point estimate of regional means and covariance matrices

in each M-step based on samples obtained in the E-step. However, this process is not very

stable since only one sample of regional assignments for each tweet is taken into account.

One way to reduce this instability would be to draw multiple samples per tweet and to

use a set of samples for estimation purposes. However, this would introduce an inner loop

in the E-step for each tweet, thus significantly increasing sampling time.

Instead, we apply a Bayesian treatment to mean vectors and covariance matrices and

do not estimate them explicitly in M-step. The standard practice in multivariate normal

distribution is to endow them with a set of conjugate parameters, that is, with a Gauss-

Wishart prior. This is computationally expensive.

A cheaper (and equally reliable) approach is to place a non-informative Jeffrey’s prior

over the values of the mean parameters, that is

µ ∼ Unif.

and a Jeffrey’s distribution over the values of the covariance matrices to penalize large

covariance matrices:

P (Σ) ∝ |Σ|−(3/2).

The same treatment is also used in [7, 76].

By imposing these prior distributions, we can effectively integrate out µ and Σ, re-

sulting in a collapsed Gibbs sampler for locations, similar to [79]. More specifically, we

sample r from the following distribution:

r ∼ T
(
N̄r, Sr

(n+ 1)

n(n− 2)
, n − 2

)
ρu,jαu,j,k

Nd∏

i=1

βj,k,v (10.17)
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Here T (a, b, n) is a multivariate Student-T distribution with the location as a, the scale

matrix as b and n degree of freedom. Here, N̄r and Sr are sample mean and sample

respectively, as defined in 10.8. Sampling r does not require us to re-estimate the values

of mean and covariance matrix in the M-step and hence reduce the computation cost of

the inference algorithm.

10.6 Implementation Notes

Several implementation notes warrant a detailed discussion here. Firstly, the bottleneck

of sampling z is to evaluate many exponential functions as we expand Equation (10.7):

exp
(
θ0
k + θuseru,k + θ

geo
r,k

)

∑K
i=1 exp

(
θ0
i + θuseru,i + θ

geo
r,i

)
Nd∏

i=1

exp
(
φ0
wi

+ φ
geo
r,wi +Πk,wi

)

∑V
j=1 exp

(
φ0
j + φ

geo
r,j +Πk,j

)

The key to speed up the sampling procedure here is to reduce the number of exponential

functions to be evaluated. We re-write the above equation as:

exp
[
θ0
k + θuseru,k + θ

geo
r,k +

Nd∑

i=1

(
φ0
wi

+ φ
geo
r,wi +Πk,wi

)

− log
K∑

i=1

exp
(
θ0
i + θuseru,i + θ

geo
r,i

)

−Nd log

V∑

j=1

exp
(
φ0
j + φ

geo
r,j +Πk,j

)]

The logarithm of a sum of components can be efficiently computed as log
∑

i exp(xi) =

m+ log[
∑

i exp(xi −m)] where m is the maximum element in xi and can be cached since

they are constant in the E-step. Therefore, we only need to calculate one exponential

function for sampling z per tweet, which significantly reduces the computational cost.

The second technique to speed up the inference algorithm is to efficiently calculate
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gradients 10.14, 10.11, and 10.10. A näıve calculation would lead to a very inefficient

implementation. Taking the gradients of Π as an example, the expanded form of gradients

is as follows:
R∑

t=1

n(t, k, v)−
R∑

t=1

n(t, k)
exp(φ0

v + φ
geo
t,v +Πk,v)

∑V
i=1 exp(φ

0
i + φ

geo
t,i +Πk,i)

where the second part of the gradients, which is the expected counts, requires the calcu-

lation for all the possible combinations of topics and latent regions. However, because of

sparse modeling in Section (10.3), we can effectively calculate the second parts by utilizing

the sparsity of the model as follows:

n(k, v) − exp(φ0
v)

R∑

t=1

n(t, k)
1

Ct,k

−
R∑

t=1

n(t, k)
1

Ct,k
exp(φ0

v)
[
exp(φ

geo
t,v )− 1)

]

−
R∑

t=1

n(t, k)
1

Ct,k
exp(φ0

v) exp(φ
geo
t,v )

[
exp(Πk,v)− 1

]

where Ct,k =
∑V

i=1 exp(φ
0
i + φ

geo
t,i + Πk,i). The gradients are decomposed into three

parts. The first part is a global term for all terms and therefore can be calculated once

and cached. The second part only exists for those φ
geo
t,v are not zero. Similarly, the

third part is non-zero only when both φ
geo
t,v and Πk,v are not zero. Thus, if we employ

a reasonable L1 regularizer on both regional and topical language models, most of those

elements would be driven to zero and therefore the second and third parts can be very

efficiently calculated. Similar decomposition also works for other gradients.

The last but not the least important technique is how to initialize the model. Different

initialization values of parameters can lead to significantly different results. Here, we use

the following initialization steps. Again, taking language models as an example, we firstly

initialize φ0 as log frequencies of terms in the whole corpus and φ
geo
r as log frequencies

251



www.manaraa.com

of terms in region r minus the same term in φ0. Then, we initialize Π as all zero and

optimize over Π by fixing φ0 and φgeo. Similar strategy can be also applied to η and θ

values. For latent regions, we initialize them by a K-Means algorithm.

10.7 Experiments

In this section, we demonstrate the effectiveness of our model on real-world datasets.

We compare our model with several state-of-the-art models. Our dataset is a sample

of the Twitter Firehose stream1, issued to Yahoo!. In Twitter, two types of location

information are associated to tweets: 1) geographical locations and 2) Twitter Places2.

For geographical locations, each tweet is associated to a real-valued latitude and longitude

vector. For Twitter Places, we convert them into real-valued latitudes and longitudes.

After doing this, we remove all tweets without locations. We also preprocess all the

remaining tweets by detecting whether a tweet is in English. This step is done by a

dictionary based method. We randomly sample 10,000 users from the dataset, with their

full set of tweets between January 2011 and May 2011, resulting 573,203 distinct tweets.

The size of the dataset is significantly larger than the ones used in some similar studies

(e.g, [67, 219]).

10.7.1 Location Prediction

In addition to demonstrating that our model can discover interesting topics and users’

geographical patterns, we also wish to show that our model can be used in a quantitative

fashion. Here, we focus on the task of location prediction for tweets. Differing from the

work done by Eisenstein et al. [67] where their aim is to predict the location for a user and

the way they defined the location of a user may not be very appropriate (the first location

1https://dev.twitter.com/docs/streaming-api/methods
2http://blog.twitter.com/2010/06/twitter-places-more-context-for-your.html
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Figure 10.2: The comparison of location prediction on Yahoo! dataset.

shown in their dataset), our goal is to predict the location for each new tweet, based

on the words used in the tweet and its authors’ information. Based on our statistics,

only 1% ∼ 2% of tweets have either geographical locations (including Twitter Places)

explicitly attached, meaning that we cannot easily locate a majority of tweets. However,

it has been shown (e.g., [50, 49]) that geographical locations can be used to predict users’

behaviors and uncover users’ interests and therefore it is potentially invaluable for many

perspectives, such as behavior targeting and online advertisements. In addition to our

dataset, we also apply our model to an open source datasest3, denoted as CMU dataset,

and compare the best reported results.

Evaluation Metric: For each new tweet, we predict its location as l̂d. We calcu-

late the Euclidean distance between predicted value and the true location and average

them over the whole test set 1
N

∑
Dis(̂ld, ld) where Dis(a, b) is the Euclidean distance

function and N is the total number of tweets in the test set.

3http://www.ark.cs.cmu.edu/GeoText/
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Baselines: The following methods are used as baselines in our dataset to compare with

the full model proposed in Section (10.2).

• Yin et al. [219]: Their method is essentially to have a global set of topics shared

across all latent regions. There is no regional language models in the model. Besides,

no user level preferences are learned in the model. The prediction is done by two

steps: 1) choosing the region index that can maximize the test tweet likelihood, and

2) use the mean location of the region as the predicted location. We re-implemented

their method in our work. This method is denoted as Baseline.

• Our model without φgeo, ηuser and θuser: This is essentially very similar to

Baseline. The only difference is that Baseline is under PLSA formalism and

our model is in SAGE formalism. We denote this method as Topics.

• Our model without ηuser and θuser: This variation of our model can learn regional

language models while user preferences are still missing here. We denote this method

as Topics + Region.

For the comparison on the CMU dataset, we compare with:

• Eisenstein et al. [67]: The model is to learn a base topic matrix that can be shared

across all latent regions and a different topic matrix as the regional variation for

each latent region. No user level preferences are learned in the model. The best

reported results are used in the experiments.

• Eisenstein et al. [65]: The original SAGE paper. The best reported results are used

in the experiments.

• Wing and Baldridge [210]: Their method is essentially to learn regional language

models per explicit regions. The best reported results are used in the experiments.
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Figure 10.3: The comparison of non-Bayesian models and Bayesian models.

For our model, the prediction is conducted in two steps. Firstly, a region index that

can maximize the likelihood of test tweet is chosen. Next, the mean location of the

corresponding region is used as the predicted location. For Bayesian treatment of

geographical modeling discussed in Section (10.5), the mean vectors are estimated after

the whole inference algorithm finishes.

Experimental Results: Firstly, we show the basic comparison between our model

and other baselines discussed above on the Yahoo! dataset. The results are shown in

Figure 10.2 where the X-axis is the number of latent regions and Y-axis is the average

Euclidean distance in kilometers (kms) between predicted locations and true locations.

In this experiment, we fix the number of topics to 50 for all models. For all models, we

adopt a five-fold cross validation setting. The numbers reported here are averaged across

different folds. One major impression is that the average error decreases as the number

of latent regions increases, although it becomes flat after 500 latent regions. This makes

sense because we predict the locations based on the mean locations of latent regions.
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Therefore, the more regions the model has, the more flexible the prediction would be. As

we discussed above, Topics method is very similar to Baseline method and therefore,

not very surprisingly, the performance of these two models is approximately the same.

For Topics + Region model, the performance is significantly better over Baseline

model and Topics model. The main reason might be that regional language models

learn special terms for different regions and therefore these terms become discriminative

when we perform location predictions. Moreover, our sparse modeling approach also

contributes to learned discriminative terms in regional language models. By incorporating

user regional preferences (ηuser), our full model performs the best on the Yahoo! dataset.

This partially validates that users might have stable mobility patterns in their usage

of micro-blogging environments and therefore we can learn this pattern through their

historical content. Indeed, Cho et al. [50] found that users who frequently use location

sharing services demonstrate surprisingly stable patterns and they successfully used a

two-component Gaussian mixture model to predict users’ locations in the future. Note

that the full model used in this experiment is the one without Bayesian geographical

modeling that is discussed in Section 10.5.

The next set of experiments is to show whether the Bayesian treatment of geograph-

ical modeling can lead to additional improvements of predication performance. As we

previously discussed, non-Bayesian modeling in locations may lead to unstable results.

The experimental setting follows the one used above and results on the task of location

prediction on Yahoo! dataset are shown in Figure (10.3) where the X-axis is the number

of latent regions and Y-axis is the average Euclidean distance in kilometers (kms) between

predicted locations and true locations. Two observations can be made from the figure.

Firstly, all models with Bayesian modeling lead to significantly improvements over their

non-Bayesian counterparts. The second observation is that, although Bayesian model-

ing can improve the performance, major improvements still comes from whether certain
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Figure 10.4: The comparison of models with different number of topics.

components are “on” or “off”. In short, Bayesian modeling in locations enjoys better

predictive performance and a more efficient inference algorithm, as discussed in previous

sections.

All previous experiments are the ones with fixed topics and different latent regions.

Here we show how the predictive performance varies for different number of topics. The

basic setting remains the same as the previous two sets of experiments and the results are

shown in Figure 10.4 by fixing the number of latent regions (as 400) on Yahoo! dataset.

The X-axis is the number of topics and Y-axis is the average Euclidean distance in kilo-

meters (kms) between predicted locations and true locations. The main observation is

that the performance does not change too much as the number of topics varies. As we

mentioned before, all these models make predictions based on the mean vectors of latent

regions. Therefore, a fixed number of regions will limit the predictive power of these mod-

els and hence the performance is sort of bounded in a range. In other words, enlarging

the number of topics does not give models the flexibility to learn regions well.
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Figure 10.5: The comparison of models with randomly selected users on Yahoo! dataset.

Another interesting experiment is not to randomly sample tweets but randomly sample

users. In this setting, all users in the test set are never shown in the training set and

therefore we do not have sufficient user preference data. This setting might be more

realistic in Twitter because the majority of users never use geo-related features and hence

it is highly likely that some users will adopt this feature in the future. In order to effectively

predict locations, we use the following strategy to learn a “prior” distribution for users.

Taking ηuser as an example, since the test user is not in our training set, we optimize over

ηuser by fixing all other parameters on the fly. Therefore, the obtained values for this

user is essentially the prior regional distribution for this user, without any tweets observed.

After having this prior distribution, we can effectively predict locations as usual. We do

this optimization for users on the fly for all other user-related parameters. The results

are shown in Figure 10.5 where the X-axis is the number of latent regions and Y-axis is

the average Euclidean distance in kilometers (kms) between predicted locations and true

locations.. The main observation from the figure is that the performance from all models

is significantly worse than the experiments with randomly selected tweets. This partially
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# of latent regions [[67]] [[210]] [[65]] Topics Topics + Region Full Model

10 494 479 501 540.60 481.58 449.45

20 494 479 501 522.18 446.03 420.83

40 494 479 501 513.06 414.95 395.13

60 494 479 501 507.37 410.09 380.04

80 494 479 501 499.42 408.38 374.01

100 494 479 501 498.94 407.78 372.99

Table 10.2: Comparison of models on CMU dataset. All numbers are kilometers.

validates that all these models suffer from certain difficulties for “new” users and “new”

content. However, the relative improvement of performance remains the same as previous

experiments, suggesting that our model can learn reasonable prior distributions for users,

in order to achieve better predictive performance.

For the CMU dataset, we download their dataset and run our model on it. Note that

previous models (e.g., [67, 210]) are designed to predict the locations for users. In our

case, we can do finer grained predictions on tweet level. To make fair comparisons, two

strategies can be applied here: 1) obtain the predicted location for each tweet and take

the mean locations over them and 2) obtain the dominant region index for tweets by the

same user and use the mean value for it as the prediction. In our experiments, we have

tried both strategies and found no significant difference between them. Therefore, we only

report the results from the first strategy. The results are shown in Table (10.2). For

[67, 210, 65], the median number reported in the paper is used. We do not re-run their

models and only report numbers from corresponding papers. Firstly, we see that our full

model outperforms all previous models significantly. In addition, as the number of latent

regions increases, the predictive performance increases, which also validates the results in

our Yahoo! dataset. Here is some analysis why our model outperforms others. For [67]

and [65], they used a topic-variation matrix per region, which might be too expensive to

be applied over a large number of regions while the authors in those papers found that
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Location with Top Ranked Terms

United States − > New York − > Brooklyn

brooklyn ave flatbush avenue mta prospect 5th #brooklyn spotlight carroll bushwick museum broadway madison
vanderbilt coney slope eastern subway new york pkwy #viernesnayobon #mets otsego greenwich starbucks

United States − > California − >San Francisco

sfo francisco san airport international millbrae terminal flight burlingame bart mateo boarding bayshore telecommute
landed heading bay airlines united bound flying #sfo camino groupon caltrain moon tsa baggage california engineer valley

United States − > Pennsylvania − > Philadelphia

philadelphia #philadelphia phl #jobs market others #job street philly walnut septa chestnut the cherry
sansom arch spruce citizens locust btw temple pennsylvania rittenhouse passyunk bitlyetq7a6 bookrenters pike international

United Kingdom − > England − >London

winds lhr hounslow terminal the cloudy mph ickenham bath heathrow temperature airport car only airways uxbridge sun
splendid fair london british lounge tothers harmondsworth speedbird whens for stars day flight dominos navigation brunel

Australia − > New South Wales − > Sydney

sydney #sydney bondi george street mascot domestic syd surry station cnr platforms harbour darlinghurst qantas hoteloxford
eddy haymarket terminal wales australia chalmers uts pitt #marketing junction darling centre #citijobs citigroup druitt

Table 10.3: Examples of φgeo.

their model peaks at around 50 regions and 10 topics and the predictive performance

deteriorates otherwise for excessive number of parameters, resulting in over-fitting. In

our case, we use global topics and background topics to factor out common words. In

addition, we use two signals: regional topic distribution and regional word unigrams. For

[67, 65], their model has a single location for all tweets per user. On the contrary, our

model assumes that each user has a distribution over regions and each tweet is associated

with a region, thus we can accommodate user movements. Also, their models used a two-

stage training which does not enable the language model to influence how many regions

are needed. However, we use a joint training procedure for both regions and topics and we

re-sample the user regions in our training phase where their models assume that regions

assignments are given at the first place.

10.7.2 Qualitative Study

In this section, we take one run of our full model on Yahoo! dataset as an example to

demonstrate what kinds of topics can be obtained. Firstly, we show some samples of

regional language models. As we see in the previous section, these language models play

a vital role in location predictions. Since in our model, regions are latent variables and do

not correspond to cities or regions in the real-world. It might be difficult to demonstrate

260



www.manaraa.com

Entertainments

lady bieber album music beats artist video listen
itunes apple produced movies #bieber lol new songs

Sports

yankees match nba football giants wow win winner game
weekend horse #nba

Politics

obama election middle east china uprising egypt russian
tunisia #egypt afghanistan people eu

Table 10.4: Examples of Π, global topic matrix.

topics. Here, we assign the mean vectors of latent regions to nearest existing cities and

manually pick 5 cities as an example, shown in Table 10.3. The terms are top ranked

terms in each language model.. Terms are the ones with largest magnitudes in φgeo.

It is very interesting to see that most top ranked terms are actually the name of these

locations. Remember that our method is fully unsupervised. In addition, we can see that

top ranked terms in different regions vary significantly. Another interesting observation is

that users tend to tweet with their locations when they are in airports. This can be seen

in region “United States − > California − > San Francisco” and “United Kingdom − >

England − > London”. In addition to geographical language models, we also show some

examples from the global topic matrix Π. These language models are designed so that

broader topics will be captured here. The examples are shown in Table 10.4. The terms

are top ranked terms in each language model. Again, these topics are manually picked

and the “title” of these topics is assigned by the authors of the paper since these topics

are learned without any explicit labels. We can see that these topics are relatively broad,

compared to regional language models and widely discussed across regions. Some topics

might have captured recent unrest in the Middle East.
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10.8 Summary

In this chapter, we address the problem of modeling geographical topical patterns on

Twitter by introducing a novel sparse generative model, which utilizes both statistical

topic models and sparse coding techniques to provide a principled method for uncovering

different language patterns and common interests shared across the world. Our approach

is vital for applications such as behavior targeting, user profiling, content recommendation

and topic tracking and the method can be easily extended in a number of ways. We show

that interesting topics can be identified by the model and we demonstrate its effectiveness

on the task of predicting locations of new messages and outperform non-trivial baselines.

Main contributions of this work include a) a sparse additive model of content and locations

that incorporate multiple facets of micro-blogging environments without switch variables,

b) sparse coding techniques and Bayesian treatments are smoothly embedded in our mod-

eling, resulting in an efficient and effective implementation and c) outperforms several

state-of-the-art algorithms in the task of location predictions and demonstrate interesting

patterns from real-world datasets. For future work, we wish to model human mobility

explicitly by introducing user level regional components. In addition, temporal factors

should also be considered for the task of location prediction.

10.9 Bibliographic Notes

We briefly review two lines of related research. The first is a range of papers which

use geographical language modeling in general while the second is a set of works which

are specifically tuned for Twitter data. We are particularly interested in models and

approaches that combine geographical modeling and language modeling to discover topics

from geographical regions. We summarize some of representative work here:

• Mei et al. [142] propose a model based on Probabilistic Latent Semantic Indexing
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(PLSA) [88]. It assumes that each word is either drawn from a universal background

topic or from a location and time dependent language model. Inference is performed

via EM. However, the mixture coefficients between the background topic and other

spatio-temporal topics ones is tuned manually. Since the model uses PLSA, no prior

distribution is (or could be) assumed. Evaluation is carried out by showing anecdotal

results.

• Later, Wang et al. [198] introduce a fully Bayesian generative model to incorporate

locations. Rather than working with real latitudes and longitudes, they have a fixed

number of region labels and they assume that each term is associated with a location

label. For each word in a document, a topic assignment is first generated according

to a multinomial distribution. Then the term and the location are generated depen-

dent on this topic assignment, according to two different multinomial distributions.

The inference is performed by Variational EM. Again the evaluation is limited to

anecdotal results.

• Sizov [182] propose a similar model to [198]. Rather than using a multinomial

distribution to generate locations they replace it with two Gaussian distributions for

generating latitude and longitude respectively. For inference, this work uses Gibbs

Sampling and the evaluation is done by showing anecdotal results, by measuring

Deviation Information Criteria (a model complexity criterion similar to BIC), as

well as classification accuracy using manually labeled data. One of the drawbacks

of the work is that they only use data from Flickr restricted to the greater London

area.

• Hao et al. [82] propose a model built uponWang et al. [198]. However, they introduce

the notion of global topics and local topics where more general terms are grouped into

global topics and terms related to local events going to local topics. The inference
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is performed by Gibbs Sampling. Hao et al. [82] evaluate their model based on

anecdotal results and some heuristic measurements.

• Yin et al. [219] propose a model is similar in spirit to Eisenstein et al. [67]. The

terms and the location of a particular document are generated by a latent region.

The location is generated from a region by a normal distribution and the region is

sampled from a multinomial distribution. The prior is also placed into the model,

however the inference is done by MAP-style EM rather than a fully Bayesian fashion.

The model is evaluated using perplexity and by showing anecdotal results.

• Wing and Baldridge [210] use an even simpler approach where documents are as-

signed to geodesic grids and thus a supervised learning method is utilized, essentially

yielding to build näıve Bayes classifiers on geodesic grids.

Although there exists such attempts of modeling language patterns and geographical lo-

cations, most prior work does not consider users at all.

A second line of work covers models directly designed to work on Twitter data. For

instance, Eisenstein et al. [67] propose a model utilizing the correlations between global

and local topics. In their model, each author is assigned a latent region variable and an

observed GPS location. Terms and the actual GPS location are both conditioned on the

latent region variable. The topics to generate terms are local topics, which are derived

from global topics. The inference is done by Variational EM and the evaluation is done

by measuring the accuracy of predicted location and showing anecdotal results. Finally,

Cho et al. [50] studied the problem of human mobility in location sharing services. Their

findings include that users tend to appear in a very limited number of places (e.g., office

and home). They demonstrated that it might be effective enough to use a two component

Gaussian mixture model to estimate users’ locations.

It has been an active research area to incorporate different information sources into
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topic modeling. For example, Chemudugunta et al. [43] propose a method to combine

corpus-wide topics and document-specific language patterns together by using a “switch”

variable for each term in the document, becoming a popular scheme in topic modeling

literature. We use a “switch-free” approach in this work and therefore reduce the number

of variables used in the model. Last, for general patterns and analysis of social location

sharing services, please refer to Cheng et al. [49].
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Chapter 11

Conclusion and Future Work

In this chapter, we summarize our research findings and discuss future research directions.

11.1 Summary

Online conversational media has gained popularity in recent years due to the emergence

and advances of social media services, bringing users across the globe to have conversa-

tions and share information more effectively and efficiently. It attracts a great amount of

research on mining and understanding useful patterns from online conversational media.

In this thesis, we mainly focus on two fundamental problems, information filtering and

users’ interests modeling – trying to provide a guideline for social media researchers and

practitioners to build information systems that can serve the increasingly dynamic user

needs. On high level, in terms of methodologies, the contributions of this thesis to the

aspect of information filtering include:

• a comprehensive study on how users’ authority impact the performance of retrieval

tasks in online conversational media, showing 10% improvement over state-of-the-art

counterparts in some tasks.
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• a generic method to predict the popularity of a message in an online conversational

media, the first study in this line of research with a thorough discussion of effective-

ness of a wide range of features.

• a probabilistic framework to predict personal user decisions of messages in an online

conversational media, including application scenarios in an online professional social

network and a micro-blogging service. The framework utilizes collaborative filtering,

meta-information and content information to estimate the likelihood of an action,

resulting in an 15% to 20% improvement over other state-of-the-art algorithms.

• a comprehensive empirical study of how topic modeling results can be used in in-

formation filtering, a first study in this line of research, which sheds the lights on

the importance of topic modeling to the research of onilne conversational media in

general.

Using these contributions, one can easily build information filtering systems for similar

environments. The last contribution leads to the investigation of embedding different

meta-information to topic modeling, in the hope of developing more effective models to

reveal hidden patterns in online conversational media. In this thesis, the contributions of

topic modeling include:

• a topic model that can directly handle the term volumes and predict them in a

time series manner, a first work to address the evaluation problem of temporal

topic models, achieving significant improvement over non-trivial standard time-series

models.

• a topic model that utilizes multiple information sources to discover topics with tem-

poral dynamics, a first work to tackle this practical work and outline a framework

to deal with similar tasks.
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• a general topic model to incorporate geographical information associated with con-

versations to discover hidden language patterns in online conversational media.

All these models can be easily used for building information systems that need to utilize

topics.

In addition to new methodologies and frameworks, some of the methods and the tech-

niques developed in this dissertation improve state-of-the-art algorithms in building per-

sonalization and recommendation systems in online conversational media. In particular,

in this thesis, we have improved the state-of-the-art in the following scenarios:

• For filtering question answer pairs from CQA portals, we explore the problem

of filtering question answering content from discussion boards and divide it into two

subtasks: identifying question–related first posts and finding potential answers in

subsequent responses within the corresponding threads. We address both subtasks

as classification problems and choose several content–based and non-content based

features and carefully compare them individually and also in combinations. We

do not use any service or dataset–specific heuristics or features (like the rank of

users) in our classification model; therefore our approach should be usable in any

discussion board. We compare our approach with previous methods and show 10%

improvements in experimental results.

• For filtering popular messages in micro-blogging services, we cast the prob-

lem into a classification framework and build classifiers with positive and negative

examples of messages which will be retweeted in the future and which contain URLs

which are shared in the future. To build such classifiers, we investigate a wide

spectrum of features to determine which ones can be successfully used as predic-

tors of popularity, including the content and topical information of messages, graph
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structural properties of users, temporal dynamics of popular messages and meta-

information of users and messages as well. Our experiments are conducted on two

massive real-world datasets and the results suggest that we can successfully pre-

dict whether a message will be popular or not and its volume with 20% more F1

compared to non-trivial baselines.

• For filtering relevant messages for each individual in micro-blogging ser-

vices, we study the problem of predicting whether a user will take actions towards

a message in micro-blogging environment. Our method can be easily extended to

model multiple types of users’ decisions as well. We propose Co-Factorization Ma-

chines (CoFM), which deal with two (multiple) aspects of the dataset where each

aspect is a separate FM. This type of model can easily predict user decisions while

modeling user interests through content at the same time. With this tool, we apply

Factorization Machines to text data with constraints. Thus, the resulting method

can mimic state-of-the-art topic models and yet benefit from the efficiency of a sim-

pler form of modeling. We apply our proposed methods to the problem of modeling

personal decision making in Twitter and explore a wide range of features, reveal-

ing which types of features contribute to the predictive modeling and how content

information can help with the prediction, resulting 10% improvement over existing

state-of-the-art models.

• For tracking temporal trends, we propose a new type of topic model incorporating

the volume of terms into the temporal dynamics of topics and directly optimize

for the task. Unlike existing models in which trends are either latent variables or

not considered at all and thus are difficult to apply in practice, we combine state-

space models with term volumes in a supervised learning fashion which enables us to

effectively predict volumes in the future, even without new documents. In addition, it
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is straightforward to obtain the volumes of latent topics as a by-product of our model,

demonstrating the superiority of utilizing temporal topic models over traditional

time-series tools (e.g., autoregressive models) to tackle this kind of problem. The

proposed model can be further extended with arbitrary word-level features which

are evolving over time. We present the results of applying the model to two datasets

with long time periods and show its effectiveness by improving non-trivial baselines

over 15% to 20% in terms of prediction accuracy.

• For modeling temporal dyanmics on multiple data sources, we extend topic

models by allowing each text stream to have both local and shared topics. Also, we

associate each topic with a time-dependent function that characterizes its popularity

over time. By combining the two models, we effectively model temporal dynamics

of multiple correlated text streams in a unified framework. The new model can

easily discover common and uncommon topics from multiple text collections with

their temporal dynamics. The proposed method is a simple and potentially scalable

algorithm for mining temporal topics. We mined interesting results from Yahoo!

News and Twitter obtained by applying our model.

• For geographical information, we propose a model that is both flexible enough

to embed all reasonable components of content and geographical locations, as well

as user preference modeling. Moreover, it scales to real-world datasets to handle

millions of documents and users. We address the problem of modeling geograph-

ical topical patterns on Twitter by introducing a novel sparse generative model.

It utilizes both statistical topic models and sparse coding techniques to provide a

principled method for uncovering different language patterns and common interests

shared across the world. Our approach is vital for applications such as user pro-

filing, content recommendation and topic tracking and the method can be easily
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extended in a number of ways. We show that interesting topics can be identified by

the model and we demonstrate its effectiveness on the task of predicting locations

of new messages and outperforms existing generative models by 20% in terms of

prediction accuracy.

11.2 Future Work

There are multiple potential directions for future work, based on this thesis. Here, we

present three directions:

• Allowing in-depth understanding of conversations: Although online conver-

sations play a central role in this dissertation and different aspects of conversations

are discussed, it is lacking an in-depth understanding of them. It is believed that

traditional language processing and understanding techniques cannot be easily ap-

plied to online conversational media for the reasons discussed in the introduction

of this thesis. For instance, some researchers [77, 131] have tried to conduct part-

of-speech recognition tasks on Twitter, a typical online conversational media, and

faced a significant challenge, compared to traditional data such as news articles.

Similarly, Ritter et al. [170] proposed a generative model, trying to uncover conver-

sational structure among users from Twitter. The model makes strong assumption

on how conversations are generated and the performance is not comparable to tra-

ditional domains. In all, it is an attractive challenge to develop models for deep

understanding of content in online conversational media.

• Integrating graph-based models: Currently, all models utilize network or graph

information as features of more high-level models, such as classifiers or regression

models. More complicated models have been developed for graphs or networks in a

271



www.manaraa.com

newly emerged subfield, network science. It would be interesting to explore the pos-

sibility of bridging topic modeling, recommendation and network science, by utilizing

the tools of probabilistic modeling. Currently, they are developed in separate com-

munities and each direction may not be fully aware of the other ones. For instance,

network models [151] are rarely explored in topic modeling and recommendation

communities and shallow features about networks are usually calculated and used.

The challenges of modeling social network enabled data have the potential to be

enhanced by network models.

• Scalable learning algorithms: The sheer amount of data from online conversa-

tional media places a tremendous challenge for learning a meaningful model in an

effective and efficient way. Many models presented in this thesis are or can be cast

into graphical models. It has been an active research area to develop large-scale

learning algorithms for graphical models. For instance, one direction of research is

to exploit large computing clusters of commodity machines, adapting existing algo-

rithms in such contexts. In this approach, a common case is to modify existing single

machine algorithms or impose complex scheduling techniques to ensure that these

algorithms can achieve reasonable results on large clusters (e.g., [150, 183, 5]). One

drawback of this direction is that, some speedup techniques are model specific and

the proposed architectures usually do not fit into the current standard MapReduce

paradigm. An alternative direction is to develop intrinsically fast algorithms, which

can scale to large datasets even on a single machine. For example, recently devel-

oped stochastic variational inference techniques for graphical models (e.g., [86, 197])

might be a promising direction to analyze large datasets with millions of data in-

stances on a single machine. However, the drawbacks of this direction are that 1)

these techniques require a non-trivial number of hyper-parameters to tune and 2)

no clear vision exists for parallelizing these algorithms. In general, scalable learning
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algorithms still remain a tremendous challenge for probabilistic modeling.

11.3 Conclusion

In this dissertation, we provide a comprehensive study of mining and understanding online

conversational media, focusing on problems of information filtering and topic modeling.

For information filetering, we develop a series of predictive models with a wide range of

features to tackle tasks such as detecting question-answer pairs from community-based

answering portals, identifying global popular messages from and designing personal infor-

mation filtering algorithms for online professional services and micro-blogging services. For

topic modeling, we develop probablistic models to incorporate temporal and geographical

information into existing graphical topic models to discover interesting patterns from on-

line social data. In both directions, we advance the state-of-the-art and demonstrate that

the online conversational media can be tackled in a large scale. The future study stands

on allowing deeper understanding of conversational structures and integrating network

models. In addition, scalable learning algorithms will become the backbone technique to

support those areas.
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